OFFSET
1,2
COMMENTS
Logarithmic derivative of A174467.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = sigma(n)^2 iff n is squarefree.
Dirichlet g.f. zeta(s) * (zeta(s-1))^2 * zeta(s-2). - R. J. Mathar, Feb 06 2011
Sum_{k=1..n} a(k) ~ Pi^4 * zeta(3) * n^3 / 108. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(p^e) = (p^(2*e+4) - (e+2)*(p^2-1)*p^(e+1) - 1)/((p-1)^3*(p+1)). - Amiram Eldar, Aug 27 2023
MATHEMATICA
Table[Sum[d*DivisorSigma[1, d]*DivisorSigma[1, n/d], {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 02 2019 *)
f[p_, e_] := (p^(2*e + 4) - (e + 2)*(p^2 - 1)*p^(e + 1) - 1)/((p - 1)^3*(p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
PROG
(PARI) {a(n)=sumdiv(n, d, d*sigma(n/d)*sigma(d))}
(PARI) a(n)=sumdiv(n, x, x * sumdiv(x, y, sumdiv(y, z, z ) ) ); /* Joerg Arndt, Oct 07 2012 */
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Paul D. Hanna, Apr 04 2010
STATUS
approved