OFFSET
3,1
LINKS
Colin Barker, Table of n, a(n) for n = 3..1000
Gordon Royle, Cages of higher valency
Index entries for linear recurrences with constant coefficients, signature (1,7,-7).
FORMULA
a(2*i) = 2 Sum_{j=0..i-1} 7^j = string "2"^i read in base 7.
a(2*i+1) = 7^i + 2 Sum_{j=0..i-1} 7^j = string "1"*"2"^i read in base 7.
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) for n>5.
G.f.: x^3*(9 + 7*x - 14*x^2) / ((1 - x)*(1 - 7*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = (7^(n/2) - 1)/3 for n even.
a(n) = (4*7^(n/2-1/2) - 1)/3 for n odd. (End)
E.g.f.: (7*(cosh(sqrt(7)*x) - cosh(x) - sinh(x)) + 4*sqrt(7)*sinh(sqrt(7)*x) - 21*x*(1 + x))/21. - Stefano Spezia, Apr 09 2022
MATHEMATICA
LinearRecurrence[{1, 7, -7}, {9, 16, 65}, 40] (* Harvey P. Dale, Oct 14 2019 *)
PROG
(PARI) Vec(x^3*(9 + 7*x - 14*x^2) / ((1 - x)*(1 - 7*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017
CROSSREFS
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), this sequence (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).
KEYWORD
nonn,easy,base
AUTHOR
Jason Kimberley, Oct 30 2011
STATUS
approved