login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198309 Moore lower bound on the order of a (9,g)-cage. 16
10, 18, 82, 146, 658, 1170, 5266, 9362, 42130, 74898, 337042, 599186, 2696338, 4793490, 21570706, 38347922, 172565650, 306783378, 1380525202, 2454267026, 11044201618, 19634136210, 88353612946, 157073089682, 706828903570, 1256584717458, 5654631228562 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

LINKS

Colin Barker, Table of n, a(n) for n = 3..1000

Gordon Royle, Cages of higher valency

Index entries for linear recurrences with constant coefficients, signature (1,8,-8).

FORMULA

a(2*i) = 2 Sum_{j=0..i-1} 8^j =  string "2"^i read in base 8.

a(2*i+1) = 8^i + 2 Sum_{j=0..i-1} 8^j = string "1"*"2"^i read in base 8.

From Colin Barker, Feb 01 2013: (Start)

a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) for n>5.

G.f.: 2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)).

(End)

From Colin Barker, Mar 17 2017: (Start)

a(n) = 2*(2^(3*n/2) - 1)/7 for n even.

a(n) = (9*2^((3*(n-1))/2) - 2)/7 for n odd.

(End)

MATHEMATICA

LinearRecurrence[{1, 8, -8}, {10, 18, 82}, 30] (* Harvey P. Dale, Apr 03 2015 *)

PROG

(PARI) Vec(2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017

CROSSREFS

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), this sequence (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Sequence in context: A186235 A241053 A068642 * A167342 A288781 A233451

Adjacent sequences:  A198306 A198307 A198308 * A198310 A198311 A198312

KEYWORD

nonn,easy,base

AUTHOR

Jason Kimberley, Oct 30 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 03:37 EST 2018. Contains 299330 sequences. (Running on oeis4.)