login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198309
Moore lower bound on the order of a (9,g)-cage.
16
10, 18, 82, 146, 658, 1170, 5266, 9362, 42130, 74898, 337042, 599186, 2696338, 4793490, 21570706, 38347922, 172565650, 306783378, 1380525202, 2454267026, 11044201618, 19634136210, 88353612946, 157073089682, 706828903570, 1256584717458, 5654631228562
OFFSET
3,1
FORMULA
a(2*i) = 2 Sum_{j=0..i-1} 8^j = string "2"^i read in base 8.
a(2*i+1) = 8^i + 2 Sum_{j=0..i-1} 8^j = string "1"*"2"^i read in base 8.
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) for n>5.
G.f.: 2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = 2*(2^(3*n/2) - 1)/7 for n even.
a(n) = (9*2^((3*(n-1))/2) - 2)/7 for n odd. (End)
E.g.f.: (8*(cosh(2*sqrt(2)*x) - cosh(x) - sinh(x)) + 9*sqrt(2)*sinh(2*sqrt(2)*x) - 28*x*(1 + x))/28. - Stefano Spezia, Apr 09 2022
MATHEMATICA
LinearRecurrence[{1, 8, -8}, {10, 18, 82}, 30] (* Harvey P. Dale, Apr 03 2015 *)
PROG
(PARI) Vec(2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017
CROSSREFS
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), this sequence (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).
Sequence in context: A186235 A241053 A068642 * A167342 A288781 A233451
KEYWORD
nonn,easy,base
AUTHOR
Jason Kimberley, Oct 30 2011
STATUS
approved