The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198306 Moore lower bound on the order of a (6,g)-cage. 17
 7, 12, 37, 62, 187, 312, 937, 1562, 4687, 7812, 23437, 39062, 117187, 195312, 585937, 976562, 2929687, 4882812, 14648437, 24414062, 73242187, 122070312, 366210937, 610351562, 1831054687, 3051757812, 9155273437, 15258789062 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 LINKS Gordon Royle, Cages of higher valency Index entries for linear recurrences with constant coefficients, signature (1,5,-5). FORMULA a(2*i) = 2*Sum_{j=0}^{i-1} 5^j = string "2"^i read in base 5. a(2*i+1) = 5^i + 2*Sum_{j=0}^{i-1} 5^j = string "1"*"2"^i read in base 5. a(n) <= A218554(n). - Jason Kimberley, Dec 21 2012 a(n) = a(n-1)+5*a(n-2)-5*a(n-3). G.f.: -x^3*(10*x^2-5*x-7) / ((x-1)*(5*x^2-1)). - Colin Barker, Feb 01 2013 From Colin Barker, Nov 25 2016: (Start) a(n) = (5^(n/2) - 1)/2 for n>2 and even. a(n) = (3*5^((n-1)/2) - 1)/2 for n>2 and odd. (End) MATHEMATICA LinearRecurrence[{1, 5, -5}, {7, 12, 37}, 30] (* Harvey P. Dale, Jun 28 2015 *) CROSSREFS Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), this sequence (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). Sequence in context: A330589 A197229 A316088 * A218554 A113499 A335579 Adjacent sequences:  A198303 A198304 A198305 * A198307 A198308 A198309 KEYWORD nonn,easy,base AUTHOR Jason Kimberley, Oct 30 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 22:49 EST 2021. Contains 349596 sequences. (Running on oeis4.)