login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A198303
Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth exactly g.
18
1, 1, 1, 3, 2, 13, 5, 1, 63, 20, 2, 399, 101, 8, 1, 3268, 743, 48, 1, 33496, 7350, 450, 5, 412943, 91763, 5751, 32, 5883727, 1344782, 90553, 385, 94159721, 22160335, 1612905, 7573, 1, 1661723296, 401278984, 31297357, 181224, 3, 31954666517
OFFSET
2,4
COMMENTS
The first column is for girth exactly 3. The row length is incremented to g-2 when 2n reaches A000066(g).
LINKS
F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, Computer investigations of cubic graphs, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976.
EXAMPLE
1;
1, 1;
3, 2;
13, 5, 1;
63, 20, 2;
399, 101, 8, 1;
3268, 743, 48, 1;
33496, 7350, 450, 5;
412943, 91763, 5751, 32;
5883727, 1344782, 90553, 385;
94159721, 22160335, 1612905, 7573, 1;
1661723296, 401278984, 31297357, 181224, 3;
31954666517, 7885687604, 652159389, 4624480, 21;
663988090257, 166870266608, 14499780660, 122089998, 545;
14814445040728, 3781101495300, 342646718608, 3328899586, 30368;
CROSSREFS
The sum of the n-th row of this sequence is A002851(n).
Connected 3-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: this sequence (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).
Sequence in context: A218566 A125135 A055456 * A093922 A075555 A075556
KEYWORD
nonn,hard,tabf
AUTHOR
Jason Kimberley, Nov 16 2011
STATUS
approved