login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002851 Number of unlabeled trivalent (or cubic) connected graphs with 2n nodes.
(Formerly M1521 N0595)
43
1, 0, 1, 2, 5, 19, 85, 509, 4060, 41301, 510489, 7319447, 117940535, 2094480864, 40497138011, 845480228069, 18941522184590, 453090162062723, 11523392072541432, 310467244165539782, 8832736318937756165 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

CRC Handbook of Combinatorial Designs, 1996, p. 647.

F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 195.

R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.

R. C. Read and G. F. Royle, Chromatic roots of families of graphs, pp. 1009-1029 of Y. Alavi et al., eds., Graph Theory, Combinatorics and Applications. Wiley, NY, 2 vols., 1991.

R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence)

LINKS

Table of n, a(n) for n=0..20.

G. Brinkmann, J. Goedgebeur and B. D. McKay, Generation of cubic graphs, Discr. Math. Theor. Comp. Sci. 13 (2) (2011) 69-80

F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, Computer investigations of cubic graphs, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976 [From N. J. A. Sloane, Jan 12 2012].

F. C. Bussemaker, S. Cobeljic, D. M. Cvetkovic, J. J. Seidel, Cubic graphs on <= 14 vertices J. Combinatorial Theory Ser. B 23(1977), no. 2-3, 234--235. MR0485524 (58 #5354).

Timothy B.P. Clark, Adrian Del Maestro, Moments of the inverse participation ratio for the Laplacian on finite regular graphs, arXiv preprint, 2015.

H. Gropp, Enumeration of regular graphs 100 years ago, Discrete Math., 101 (1992), 73-85.

House of Graphs, Cubic graphs

Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g

M. Klin, M. Rücker, Ch. Rücker and G. Tinhofer, Algebraic Combinatorics [broken link]

M. Klin, M. Rücker, Ch. Rücker, G. Tinhofer, Algebraic Combinatorics (1997)

R. J. Mathar/Wikipedia, Table of simple cubic graphs [From N. J. A. Sloane, Feb 28 2012]

M. Meringer, Tables of Regular Graphs

R. W. Robinson and N. C. Wormald, Numbers of cubic graphs. J. Graph Theory 7 (1983), no. 4, 463-467.

Sage, Common Graphs (Graph Generators)

H. M. Sultan, Separating pants decompositions in the pants complex.

H. M. Sultan, Net of Pants Decompositions Containing a non-trivial Separating Curve in the Pants Complex, arXiv:1106.1472, 2011

Eric Weisstein's World of Mathematics, Cubic Graph

EXAMPLE

a(0)=1 because the null graph (with no vertices) is vacuously 3-regular.

a(1)=0 because there are no simple connected cubic graphs with 2 nodes.

a(2)=1 because the tetrahedron is the only cubic graph with 4 nodes.

CROSSREFS

Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)

3-regular simple graphs: this sequence (connected), A165653 (disconnected), A005638 (not necessarily connected), A005964 (planar).

Connected regular graphs A005177 (any degree), A068934 (triangular array), specified degree k: this sequence (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).

Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: this sequence (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).

Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)

Sequence in context: A179566 A107377 A058132 * A124348 A268605 A205804

Adjacent sequences:  A002848 A002849 A002850 * A002852 A002853 A002854

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from R. C. Read (rcread(AT)math.uwaterloo.ca)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 11:48 EST 2016. Contains 278874 sequences.