login
A006924
Number of connected trivalent graphs with 2n nodes and girth exactly 4.
(Formerly M1526)
18
0, 0, 0, 1, 2, 5, 20, 101, 743, 7350, 91763, 1344782, 22160335, 401278984, 7885687604, 166870266608, 3781101495300
OFFSET
0,5
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 647.
Gordon Royle, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, Computer investigations of cubic graphs, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976.
FORMULA
a(n) = A014371(n) - A014372(n).
CROSSREFS
Connected k-regular simple graphs with girth exactly 4: this sequence (k=3), A184944 (k=4), A184954 (k=5), A184964 (k=6), A184974 (k=7).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); specified g: A006923 (g=3), this sequence (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).
Connected 3-regular simple graphs with girth at least g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Sequence in context: A039909 A009551 A323274 * A212580 A370669 A261779
KEYWORD
nonn,hard,more
AUTHOR
EXTENSIONS
Definition corrected to include "connected", and "girth at least 4" minus "girth at least 5" formula provided by Jason Kimberley, Dec 12 2009
STATUS
approved