login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006922
Expansion of 1/eta(q)^24; Fourier coefficients of T_{14}.
(Formerly M5160)
13
1, 24, 324, 3200, 25650, 176256, 1073720, 5930496, 30178575, 143184000, 639249300, 2705114880, 10914317934, 42189811200, 156883829400, 563116739584, 1956790259235, 6599620022400, 21651325216200, 69228721526400, 216108718571250, 659641645039360, 1971466420726656
OFFSET
-1,2
COMMENTS
Euler transform of period 1 sequence [24,24,...].
Equals A023021 convolved with A000041. - Gary W. Adamson, Jun 09 2009
Equals convolution square of A005758: (1, 12, 90, 520, 2535, 10908, ...). - Gary W. Adamson, Jun 13 2009
Note the remarkably wide range of subjects where this sequence appears. - N. J. A. Sloane, Oct 29 2019
REFERENCES
Arnaud Beauville, Counting rational curves on K3 surfaces, arXiv:alg-geom/9701019, Jan 1997.
Frenkel, I. B. Representations of Kac-Moody algebras and dual resonance models. Applications of group theory in physics and mathematical physics (Chicago, 1982), 325--353, Lectures in Appl. Math., 21, Amer. Math. Soc., Providence, RI, 1985. MR0789298 (87b:17010).
Moreno, Carlos J., Partitions, congruences and Kac-Moody Lie algebras. Preprint, 37pp., no date. See Table III.
C. J. Moreno and A. Rocha-Caridi, The exact formula for the weight multiplicities of affine Lie algebras, I, pp. 111-152 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
C. L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1980, pp. 249-268.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Vainsencher, Israel. "Enumeration of n-fold tangent hyperplanes to a surface." arXiv preprint alg-geom/9312012 (1993). Section 5.5 appears to give these numbers in the context of enumerating n-nodal curves, a result which was later established by Beauville.
S.-T. YAU, E. ZASLOW: BPS states, string duality, and nodal curves on K3. Preprint arXiv:hep-th/9512121, 1995.
LINKS
Seiichi Manyama, Table of n, a(n) for n = -1..10000 (first 202 terms from T. D. Noe)
R. E. Borcherds, Automorphic forms on O_{s+2,2}(R)^{+} and generalized Kac-Moody algebras, pp. 744-752 of Proc. Intern. Congr. Math., Vol. 2, 1994.
Richard E. Borcherds, Vinberg’s Algorithm and Kac-Moody algebras, Vinberg Lecture, Feb 26 2024.
Reinhold W. Gebert, Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebra, Internat. J. Modern Phys. A 8(1993), no. 31, 5441--5503. MR1248070 (95a:17037) [See Sect. 4.6 - N. J. A. Sloane, Apr 07 2014]
FORMULA
G.f.: (1/x)(Product_{k>0} (1-x^k))^-24 = 1/Delta (the discriminant in Siegel's notation).
a(n) ~ 2*Pi * BesselI(13, 4*Pi*sqrt(n)) / n^(13/2) ~ exp(4*Pi*sqrt(n)) / (sqrt(2)*n^(27/4)) * (1 - 675/(32*Pi*sqrt(n)) + 450225/(2048*Pi^2*n)). - Vaclav Kotesovec, Jan 08 2017
a(-1) = 1, a(n) = (24/(n+1))*Sum_{k=1..n+1} A000203(k)*a(n-k) for n > -1. - Seiichi Manyama, Mar 26 2017
EXAMPLE
T_{14} = 1/q + 24 + 324q + 3200q^2 + 25650q^3 + ....
MAPLE
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add(d*24, d=divisors(j)) *b(n-j), j=1..n)/n) end: a:= n->b(n+1): seq(a(n), n=-1..40); # Alois P. Heinz, Oct 17 2008
MATHEMATICA
max = 18; f[x_] := (1/x)*Product[1-x^k, {k, 1, max}]^-24; Join[{1}, CoefficientList[ Series[ f[x] - 1/x, {x, 0, max-1}], x]] (* Jean-François Alcover, Oct 11 2011 *)
CoefficientList[1/QPochhammer[q]^24 + O[q]^40, q] (* Jean-François Alcover, Nov 15 2015 *)
PROG
(PARI) a(n)=if(n<-1, 0, n++; polcoeff(eta(x+x*O(x^n))^-24, n))
(Julia) # DedekindEta is defined in A000594.
A006922List(len) = DedekindEta(len, -24)
A006922List(33) |> println # Peter Luschny, Mar 10 2018
CROSSREFS
24th column of A144064. - Alois P. Heinz, Oct 17 2008
Cf. A005758, A023021, A000041. - Gary W. Adamson, Jun 09 2009
Sequence in context: A239793 A289706 A300846 * A036221 A022652 A292298
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Barry Brent (barryb(AT)primenet.com)
STATUS
approved