login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006922 Expansion of 1/eta(q)^24; Fourier coefficients of T_{14}.
(Formerly M5160)
13
1, 24, 324, 3200, 25650, 176256, 1073720, 5930496, 30178575, 143184000, 639249300, 2705114880, 10914317934, 42189811200, 156883829400, 563116739584, 1956790259235, 6599620022400, 21651325216200, 69228721526400, 216108718571250, 659641645039360, 1971466420726656 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

COMMENTS

Euler transform of period 1 sequence [24,24,...].

Equals A023021 convolved with A000041. - Gary W. Adamson, Jun 09 2009

Equals convolution square of A005758: (1, 12, 90, 520, 2535, 10908, ...). - Gary W. Adamson, Jun 13 2009

Note the remarkably wide range of subjects where this sequence appears. - N. J. A. Sloane, Oct 29 2019

REFERENCES

Arnaud Beauville, Counting rational curves on K3 surfaces, arXiv:alg-geom/9701019, Jan 1997.

Frenkel, I. B. Representations of Kac-Moody algebras and dual resonance models. Applications of group theory in physics and mathematical physics (Chicago, 1982), 325--353, Lectures in Appl. Math., 21, Amer. Math. Soc., Providence, RI, 1985. MR0789298 (87b:17010).

Moreno, Carlos J., Partitions, congruences and Kac-Moody Lie algebras. Preprint, 37pp., no date. See Table III.

C. J. Moreno and A. Rocha-Caridi, The exact formula for the weight multiplicities of affine Lie algebras, I, pp. 111-152 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.

C. L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1980, pp. 249-268.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Vainsencher, Israel. "Enumeration of n-fold tangent hyperplanes to a surface." arXiv preprint alg-geom/9312012 (1993). Section 5.5 appears to give these numbers in the context of enumerating n-nodal curves, a result which was later established by Beauville.

S.-T. YAU, E. ZASLOW: BPS states, string duality, and nodal curves on K3. Preprint arXiv:hep-th/9512121, 1995.

LINKS

Seiichi Manyama, Table of n, a(n) for n = -1..10000 (first 202 terms from T. D. Noe)

R. E. Borcherds, Automorphic forms on O_{s+2,2}(R)^{+} and generalized Kac-Moody algebras, pp. 744-752 of Proc. Intern. Congr. Math., Vol. 2, 1994.

Reinhold W. Gebert, Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebra, Internat. J. Modern Phys. A 8(1993), no. 31, 5441--5503. MR1248070 (95a:17037) [See Sect. 4.6 - N. J. A. Sloane, Apr 07 2014]

Vaclav Kotesovec, Graph - the asymptotic ratio

Index entries for expansions of Product_{k >= 1} (1-x^k)^m

FORMULA

G.f.: (1/x)(Product_{k>0} (1-x^k))^-24 = 1/Delta (the discriminant in Siegel's notation).

a(n) ~ 2*Pi * BesselI(13, 4*Pi*sqrt(n)) / n^(13/2) ~ exp(4*Pi*sqrt(n)) / (sqrt(2)*n^(27/4)) * (1 - 675/(32*Pi*sqrt(n)) + 450225/(2048*Pi^2*n)). - Vaclav Kotesovec, Jan 08 2017

a(-1) = 1, a(n) = (24/(n+1))*Sum_{k=1..n+1} A000203(k)*a(n-k) for n > -1. - Seiichi Manyama, Mar 26 2017

EXAMPLE

T_{14} = 1/q + 24 + 324q + 3200q^2 + 25650q^3 + ....

MAPLE

with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add(d*24, d=divisors(j)) *b(n-j), j=1..n)/n) end: a:= n->b(n+1): seq(a(n), n=-1..40); # Alois P. Heinz, Oct 17 2008

MATHEMATICA

max = 18; f[x_] := (1/x)*Product[1-x^k, {k, 1, max}]^-24; Join[{1}, CoefficientList[ Series[ f[x] - 1/x, {x, 0, max-1}], x]] (* Jean-François Alcover, Oct 11 2011 *)

CoefficientList[1/QPochhammer[q]^24 + O[q]^40, q] (* Jean-François Alcover, Nov 15 2015 *)

PROG

(PARI) a(n)=if(n<-1, 0, n++; polcoeff(eta(x+x*O(x^n))^-24, n))

(Julia) # DedekindEta is defined in A000594.

A006922List(len) = DedekindEta(len, -24)

A006922List(33) |> println # Peter Luschny, Mar 10 2018

CROSSREFS

Cf. A000594, A048057, A048100, A048101, A048110, A048145.

24th column of A144064. - Alois P. Heinz, Oct 17 2008

Cf. A005758, A023021, A000041. - Gary W. Adamson, Jun 09 2009

Sequence in context: A239793 A289706 A300846 * A036221 A022652 A292298

Adjacent sequences:  A006919 A006920 A006921 * A006923 A006924 A006925

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Barry Brent (barryb(AT)primenet.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 14:10 EST 2021. Contains 349430 sequences. (Running on oeis4.)