login
A022652
Expansion of Product_{m>=1} (1+m*q^m)^24.
2
1, 24, 324, 3248, 26802, 191904, 1230824, 7221744, 39342783, 201199888, 974039652, 4493483424, 19859122142, 84451085664, 346817307672, 1379695128080, 5330825817507, 20050294307376, 73556403409336
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -24, g(n) = -n. - Seiichi Manyama, Dec 29 2017
LINKS
MATHEMATICA
With[{nmax=50}, CoefficientList[Series[Product[(1+m*q^m)^24, {m, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 18 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^24)) \\ G. C. Greubel, Jul 18 2018
(Magma) Coefficients(&*[(1+m*x^m)^24:m in [1..40]])[1..50] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Jul 18 2018
CROSSREFS
Column k=24 of A297321.
Sequence in context: A300846 A006922 A036221 * A292298 A138453 A004317
KEYWORD
nonn
STATUS
approved