OFFSET
0,8
LINKS
G. C. Greubel, Table of n, a(n) for the first 100 antidiagonals, flattened
FORMULA
G.f. of column k: Product_{j>=1} (1 + j*x^j)^k.
EXAMPLE
G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 3)*x^2 + (1/6)*k*(k^2 + 9*k + 20)*x^3 + (1/24)*k*(k^3 + 18*k^2 + 107*k + 42)*x^4 + (1/120)*k*(k^4 + 30*k^3 + 335*k^2 + 810*k + 624)*x^5 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 5, 9, 14, 20, ...
0, 5, 14, 28, 48, 75, ...
0, 7, 28, 69, 137, 240, ...
0, 15, 64, 174, 380, 726, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[Product[(1 + i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0..32 give A000007, A022629, A022630, A022631, A022632, A022633, A022634, A022635, A022636, A022637, A022638, A022639, A022640, A022641, A022642, A022643, A022644, A022645, A022646, A022647, A022648, A022649, A022650, A022651, A022652, A022653, A022654, A022655, A022656, A022657, A022658, A022659, A022660.
Main diagonal gives A297322.
Antidiagonal sums give A299164.
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Dec 28 2017
STATUS
approved