login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191646 Triangle read by rows: T(n,k) = number of connected multigraphs with n >= 0 edges and 1 <= k <= n+1 vertices, with no loops allowed. 19
1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 11, 11, 6, 0, 1, 6, 22, 34, 29, 11, 0, 1, 7, 37, 85, 110, 70, 23, 0, 1, 9, 61, 193, 348, 339, 185, 47, 0, 1, 11, 95, 396, 969, 1318, 1067, 479, 106, 0, 1, 13, 141, 771, 2445, 4457, 4940, 3294, 1279, 235 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1274 (terms 0..119 from R. J. Mathar)

R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], 2017; see Section 4.

Brendan McKay and Adolfo Piperno, nauty and Traces. [nauty and Traces are programs for computing automorphism groups of graphs and digraphs.]

B. D. McKay and A. Piperno, Practical Graph Isomorphism, II, J. Symbolic Computation 60 (2013), 94-112.

Gordon Royle, Small Multigraphs.

Gus Wiseman, Illustration of the 33 connected multigraphs counted in row 5.

FORMULA

T(n,k=3) = A253186(n) = A034253(n,k=2) for n >= 1. - Petros Hadjicostas, Oct 02 2019

EXAMPLE

Triangle T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:

  1;

  0, 1;

  0, 1, 1;

  0, 1, 2,  2;

  0, 1, 3,  5,  3;

  0, 1, 4, 11, 11,  6;

  0, 1, 6, 22, 34, 29, 11;

  ...

PROG

(PARI)

EulerT(v)={my(p=exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1); Vec(p/x, -#v)}

InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i) )}

permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

edges(v, x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i], v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t-1)\2)*x^t + if(t%2, 0, x^(t/2)))}

G(n, m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p, x) + O(x*x^m), -m))); s/n!}

R(n)={Mat(apply(p->Col(p+O(y^n), -n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k, n-1), y)))))}

{ my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n, k], ", ")); print) } \\ Andrew Howroyd, May 14 2018

CROSSREFS

Row sums give A076864. Diagonal is A000055.

Cf. A034253, A054923, A192517, A253186 (column k=3), A290778 (column k=4).

Cf. A000664, A007718, A036250, A050535, A191646, A191970, A275421, A317672, A322114, A322133, A322152.

Sequence in context: A296068 A144064 A172236 * A297321 A277938 A130020

Adjacent sequences:  A191643 A191644 A191645 * A191647 A191648 A191649

KEYWORD

nonn,tabl

AUTHOR

Alberto Tacchella, Jul 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 01:57 EST 2019. Contains 329850 sequences. (Running on oeis4.)