OFFSET
0,10
COMMENTS
The diagonal n = k+1 is A000055(n). - Jonathan Vos Post, Aug 10 2008
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 93, Table 4.2.2; p. 241, Table A2.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325
G. A. Baker et al., High-temperature expansions for the spin-1/2 Heisenberg model, Phys. Rev., 164 (1967), 800-817.
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017), Table 57.
Gordon Royle, Small graphs
EXAMPLE
Triangle begins:
1;
0, 1;
0, 0, 1;
0, 0, 1, 2;
0, 0, 0, 2, 3;
0, 0, 0, 1, 5 6;
0, 0, 0, 1, 5, 13, 11;
0, 0, 0, 0, 4, 19, 33, 23;
0, 0, 0, 0, 2, 22, 67, 89, 47;
0, 0, 0, 0, 1, 20, 107, 236, 240, 106;
... (so with 5 edges there's 1 graph with 4 nodes, 5 with 5 nodes and 6 with 6 nodes). [Typo corrected by Anders Haglund, Jul 08 2008]
PROG
(PARI)
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
{my(A=T(10)); for(n=1, #A, print(A[n, 1..n]))} \\ Andrew Howroyd, Oct 23 2019
CROSSREFS
Main diagonal is A000055.
Subsequent diagonals give the number of connected unlabeled graphs with n nodes and n+k edges for k=0..2: A001429, A001435, A001436.
KEYWORD
AUTHOR
EXTENSIONS
a(83)-a(89) corrected by Andrew Howroyd, Oct 24 2019
STATUS
approved