OFFSET
0,6
COMMENTS
Sum of terms larger than one on row n of table A125184.
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..8192
FORMULA
MATHEMATICA
A003961[p_?PrimeQ] := A003961[p] = Prime[ PrimePi[p] + 1]; A003961[1] = 1; A003961[n_] := A003961[n] = Times @@ ( A003961[First[#]] ^ Last[#] & ) /@ FactorInteger[n] (* after Jean-François Alcover, Dec 01 2011 *); A260443[n_]:= If[n<2, n + 1, If[EvenQ[n], A003961[A260443[n/2]], A260443[(n - 1)/2] * A260443[(n + 1)/2]]]; A275812[n_]:= PrimeOmega[n] - If[n<2, 0, Count[Transpose[FactorInteger[n]][[2]], 1]]; Table[A275812[A260443[n]], {n, 0, 150}] (* Indranil Ghosh, Mar 28 2017 *)
PROG
(PARI)
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013.
A056169(n) = { my(f=factor(n)[, 2]); sum(i=1, #f, f[i]==1); }; \\ This function from Charles R Greathouse IV, Apr 29 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 25 2017
STATUS
approved