login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284271
Number of terms with coefficient 1 in the Stern polynomial B(n,x): a(n) = A056169(A260443(n)).
3
0, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 3, 4, 1, 3, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 3, 1, 4, 5, 1, 4, 3, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 3, 2, 1, 2, 4, 1, 5, 6, 1, 5, 4, 1, 3, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 2, 4
OFFSET
0,4
COMMENTS
Number of 1's on row n of table A125184.
LINKS
FORMULA
a(n) = A056169(A260443(n)).
Other identities and observations. For all n >= 0:
A002487(n) = a(n) + A284272(n).
a(n) <= A277700(n).
MATHEMATICA
A003961[p_?PrimeQ] := A003961[p] = Prime[ PrimePi[p] + 1]; A003961[1] = 1; A003961[n_] := A003961[n] = Times @@ ( A003961[First[#]] ^ Last[#] & ) /@ FactorInteger[n](* Jean-François Alcover, Dec 01 2011 *); A260443[n_]:= If[n<2, n + 1, If[EvenQ[n], A003961[A260443[n/2]], A260443[(n - 1)/2] * A260443[(n + 1)/2]]]; a[n_]:= If[n<2, 0, Count[Transpose[FactorInteger[n]][[2]], 1]]; Table[a[A260443[n]], {n, 0, 150}] (* Indranil Ghosh, Mar 28 2017 *)
PROG
(PARI)
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013.
A056169(n) = { my(f=factor(n)[, 2]); sum(i=1, #f, f[i]==1); }; \\ This function from Charles R Greathouse IV, Apr 29 2015
(Scheme) (define (A284271 n) (A056169 (A260443 n)))
CROSSREFS
Cf. A002487, A056169, A125184, A260443, A277700, A284272, A284267 (odd bisection).
Sequence in context: A109671 A141289 A368878 * A241915 A301891 A332089
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 25 2017
STATUS
approved