login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109671
a(1)=1; thereafter, a(2n)=a(n), a(2n+1) is the smallest positive number such that |a(2n+1)-a(2n-1)|=a(n).
10
1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 3, 6, 1, 5, 2, 3, 1, 2, 1, 1, 2, 3, 3, 6, 3, 3, 6, 9, 1, 8, 5, 3, 2, 1, 3, 4, 1, 3, 2, 1, 1, 2, 1, 1, 2, 3, 3, 6, 3, 3, 6, 9, 3, 6, 3, 3, 6, 9, 9, 18, 1, 17, 8, 9, 5, 4, 3, 1, 2, 3, 1, 2, 3, 5, 4, 1, 1, 2, 3, 5, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 3, 6, 3, 3, 6, 9, 3
OFFSET
1,3
COMMENTS
A variant of the semi-Fibonacci numbers A030067.
Self-describing: the sequence of the absolute differences between odd-indexed terms is the sequence itself.
It appears that the record values form sequence A038754 and occur at indices of the form 2^k-1. - N. J. A. Sloane, May 02 2010
Does the sequence contain every positive integer (cf. A169741)?
LINKS
MAPLE
f:=proc(n) option remember; local t1;
if n = 1 then 1
elif n mod 2 = 0 then f(n/2)
else t1:= f(n-2)-f((n-1)/2);
if t1 > 0 then t1 else f(n-2)+f((n-1)/2) fi fi end;
MATHEMATICA
a[1] = 1; a[n_?EvenQ] := a[n/2]; a[n_] := a[n] = If[t1 = a[n-2] - a[(n-1)/2]; t1 > 0, t1, a[n-2] + a[(n-1)/2]]; Table[a[n], {n, 1, 104}] (* Jean-François Alcover, Nov 27 2012, after Maple *)
PROG
(Haskell)
import Data.List (transpose)
a109671 n = a109671_list !! (n-1)
a109671_list = concat (transpose [1 : f 1 a109671_list, a109671_list])
where f u (v:vs) = y : f y vs where
y = if u > v then u - v else u + v
-- Reinhard Zumkeller, Jul 07 2013
CROSSREFS
A variant of A030067. Cf. A169741-A169745.
Sequence in context: A184219 A180262 A161789 * A141289 A368878 A284271
KEYWORD
nonn,nice
AUTHOR
Eric Angelini, Apr 30 2010
EXTENSIONS
Edited by N. J. A. Sloane, May 02 2010
STATUS
approved