This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038754 a(2n) = 3^n, a(2n+1) = 2*3^n. 79
 1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442, 129140163, 258280326, 387420489 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, for the recurrence a(n)=a(n-1)*a(n-2)/a(n-3), all terms are integers iff a(0) divides a(2) and first three terms are positive integers, since a(2n+k)=a(k)*(a(2)/a(0))^n for all nonnegative integers n and k. a(n) = A140740(n+2,2). - Reinhard Zumkeller, May 26 2008 Equals eigensequence of triangle A070909; (1, 1, 2, 3, 6, 9, 18, ...) shifts to the left with multiplication by triangle A070909. - Gary W. Adamson, May 15 2010 The a(n) represent all paths of length (n+1), n>=0, starting at the initial node on the path graph P_5, see the second Maple program. - Johannes W. Meijer, May 29 2010 a(n) is the difference between numbers of multiple of 3 evil (A001969) and odious (A000069) numbers in interval [0, 2^(n+1)). - Vladimir Shevelev, May 16 2012 A "half-geometric progression": to obtain a term (beginning with the third one) we multiply the before previous one by 3. - Vladimir Shevelev, May 21 2012 Pisano period lengths: 1, 2, 1, 4, 8, 2, 12, 4, 1, 8, 10, 4, 6, 12, 8, 8, 32, 2, 36, 8, ... . - R. J. Mathar, Aug 10 2012 Sum_(n>=0) 1/a(n) = 9/4. - Alexander R. Povolotsky, Aug 24 2012 Numbers n such that the n-th cyclotomic polynomial has a root mod 3. - Eric M. Schmidt, Jul 31 2013 Range of row n of the circular Pascal array of order 6. - Shaun V. Ault, Jun 05 2014 a(2*n) = A000244(n), a(2*n+1) = A008776(n). - Reinhard Zumkeller, Oct 19 2015 LINKS T. D. Noe and Indranil Ghosh, Table of n, a(n) for n = 0..1500, (first 401 terms from T. D. Noe) S. V. Ault and C. Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics (2014). Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018. V. Shevelev, On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m, arXiv:0710.3177 [math.NT], 2007. M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240] Index entries for linear recurrences with constant coefficients, signature (0,3). FORMULA a(n) = a(n-1)*a(n-2)/a(n-3) with a(0)=1, a(1)=2, a(2)=3. a(2n) = (3/2)*a(2n-1) = 3^n, a(2n+1) = 2*a(2n) = 2*3^n. a(1)=1, a(n)=2*a(n-1) if a(n-1) is odd, or a(n)=3/2*a(n-1) if a(n-1) is even. - Benoit Cloitre, Apr 27 2003 a(n) = (1/6)*(5-(-1)^n)*3^floor(n/2); a(2n) = a(2n-1) + a(2n-2) + a(2n-3); a(2n+1) = a(2n) + a(2n-1). - Benoit Cloitre, Apr 27 2003 G.f.: (1+2x)/(1-3x^2). - Paul Barry, Aug 25 2003 a(n) = (1 + n mod 2) * 3^floor(n/2). a(n) = A087503(n) - A087503(n-1). - Reinhard Zumkeller, Sep 11 2003 a(n) = sqrt(3)(2+sqrt(3))(sqrt(3))^n/6-sqrt(3)(2-sqrt(3))(-sqrt(3))^n/6. - Paul Barry, Sep 16 2003 a(n+1) = a(n) + a(n - n mod 2). - Reinhard Zumkeller, May 26 2008 If p(i) = Fibonacci(i-3) and if A is the Hessenberg matrix of order n defined by A(i,j) = p(j-i+1), (i<=j), A(i,j)=-1, (i=j+1), and A(i,j)=0 otherwise. Then, for n>=1, a(n-1) = (-1)^n det A. - Milan Janjic, May 08 2010 a(n) = A182751(n) for n >= 2. - Jaroslav Krizek, Nov 27 2010 a(n) = Sum_{i=0..2^(n+1), i==0 mod 3} (-1)^A000120(i). - Vladimir Shevelev, May 16 2012 a(0)=1, a(1)=2, for n>=3, a(n)=3*a(n-2). - Vladimir Shevelev, May 21 2012 a(n) = sqrt(3*a(n-1)^2 + (-3)^(n-1)). - Richard R. Forberg, Sep 04 2013 a(n) = 2^((1-(-1)^n)/2)*3^((2*n-1+(-1)^n)/4). - Luce ETIENNE, Aug 11 2014 For n > 0: a(n+1) = a(n) + if a(n) odd then min{a(n), a(n-1)} else max{a(n), a(n-1)}, see also A128588. - Reinhard Zumkeller, Oct 19 2015 EXAMPLE In the interval [0,2^5) we have 11 multiples of 3 numbers, from which 10 are evil and only one (21) is odious. Thus a(4) = 10 - 1 = 9. - Vladimir Shevelev, May 16 2012 MAPLE a:=0:a:=1:for n from 2 to 50 do a[n]:=3*a[n-2]+2 od: seq(a[n]+1, n=0..34); # Zerinvary Lajos, Mar 20 2008 with(GraphTheory): P:=5: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=35; for n from 1 to nmax do B(n):=A^n; a(n):=add(B(n)[1, k], k=1..P) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, May 29 2010 MATHEMATICA lst={a=b=1}; Do[AppendTo[lst, b=2*a]; AppendTo[lst, a=b+a], {n, 0, 20}]; lst (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *) LinearRecurrence[{0, 3}, {1, 2}, 40] (* Harvey P. Dale, Jan 26 2014 *) CoefficientList[Series[(1 + 2 x) / (1 - 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2016 *) PROG (PARI) a(n)=(1/6)*(5-(-1)^n)*3^floor(n/2) (PARI) a(n)=3^(n>>1)<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 03:51 EDT 2019. Contains 326260 sequences. (Running on oeis4.)