login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182751
a(1)=1, a(2)=3, a(3)=6; a(n) = 3*a(n-2) for n > 3.
11
1, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442, 129140163, 258280326, 387420489
OFFSET
1,2
COMMENTS
For n >= 3: a(n) = the smallest number > a(n-1) such that ((a(n-2) + a(n-1))*(a(n-2) + a(n))*(a(n-1) + a(n)))/(a(n-2)*a(n-1)*a(n)) is an integer (= 10 for n >= 4).
Number of necklaces with n-1 beads and 3 colors that are the same when turned over and hence have reflection symmetry. Example: For n=4 there are 9 necklaces with the colors A, B and C: AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, CCC. The only necklaces without reflection symmetry are ABC and ACB. - Herbert Kociemba, Nov 24 2016
FORMULA
a(n) = A038754(n) for n >= 2.
a(2*k) = (3/2)*a(2*k-1) for k >= 2, a(2*k+1) = 2*a(2*k).
G.f.: x*(1 + 3*x + 3*x^2)/(1 - 3*x^2). - Herbert Kociemba, Nov 24 2016
EXAMPLE
For n = 5; a(3) = 6, a(4) = 9, a(5) = 18 before ((6+9)*(6+18)*(9+18)) / (6*9*18) = 10.
MATHEMATICA
Join[{1}, RecurrenceTable[{a[2]==3, a[3]==6, a[n]==3a[n-2]}, a[n], {n, 50}]] (* or *) Transpose[NestList[{#[[2]], #[[3]], 3#[[2]]}&, {1, 3, 6}, 49]][[1]] (* Harvey P. Dale, Oct 19 2011 *)
Rest@ CoefficientList[Series[x (1 + 3 x + 3 x^2)/(1 - 3 x^2), {x, 0, 34}], x] (* Michael De Vlieger, Nov 24 2016 *)
Join[{1}, LinearRecurrence[{0, 3}, {3, 6}, 30]] (* Vincenzo Librandi, Nov 25 2016 *)
PROG
(PARI) x='x+O('x^30); Vec(x*(1+3*x+3*x^2)/(1-3*x^2)) \\ G. C. Greubel, Jan 11 2018
(Magma) I:=[3, 6]; [1] cat [n le 2 select I[n] else 3*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 11 2018
CROSSREFS
Essentially the same as A038754 (cf. formula).
Sequence in context: A363128 A050625 A025614 * A057576 A100852 A342596
KEYWORD
nonn,easy,less,changed
AUTHOR
Jaroslav Krizek, Nov 27 2010
STATUS
approved