login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191398
Number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0)-steps at positive heights) having no DHU's (here U=(1,1), H=(1,0), and D=(1,-1)).
2
1, 1, 2, 3, 6, 9, 18, 28, 56, 89, 179, 289, 585, 956, 1948, 3214, 6591, 10959, 22609, 37833, 78486, 132037, 275316, 465255, 974659, 1653418, 3478520, 5920569, 12504448, 21344348, 45240473, 77417309, 164624203, 282335973, 602163830, 1034757445, 2212959172, 3809387953, 8167344875
OFFSET
0,3
LINKS
FORMULA
a(n) = A191397(n,0).
G.f.: 2/(1-z-2*z^3+(1-z)*sqrt(1-4*z^2)).
a(n) ~ 2^(n+7/2) * (1+3*(-1)^n/49) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
Conjecture: -(n+2)*(n-3)*a(n) +(3*n^2-3*n-14)*a(n-1) +2*(n^2-7*n+8)*a(n-2) +4*(-3*n^2+12*n-10)*a(n-3) +(7*n^2-31*n+38)*a(n-4) +4*a(n-5) +4*(n-2)^2*a(n-6)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(5)=9 because among the 10 (=A001405(5)) dispersed Dyck paths of length 5 only UDHUD has a DHU.
MAPLE
g := 2/(1-z-2*z^3+(1-z)*sqrt(1-4*z^2)); gser := series(g, z = 0, 41); seq(coeff(gser, z, n), n = 0 .. 38);
MATHEMATICA
CoefficientList[Series[2/(1-x-2*x^3+(1-x)*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
PROG
(PARI) x='x+O('x^50); Vec(2/(1-x-2*x^3+(1-x)*sqrt(1-4*x^2))) \\ G. C. Greubel, Mar 26 2017
CROSSREFS
Sequence in context: A038754 A182522 A165647 * A066313 A224958 A304912
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 04 2011
STATUS
approved