login
A304912
Number of non-isomorphic spanning hyperforests of weight n.
18
1, 1, 2, 3, 6, 9, 18, 29, 56, 97, 186, 337, 657, 1238, 2442, 4768, 9569, 19174, 39151, 80154, 166211, 346239, 727853, 1537611, 3270710, 6989669, 15018389, 32405378, 70230238, 152772075, 333552711, 730632928, 1605459844, 3537861659, 7817447580, 17317397837
OFFSET
0,3
COMMENTS
A spanning hyperforest is an antichain of finite nonempty sets, which cover a set of n vertices, whose connected components are hypertrees (see A304867). The weight of a hypertree is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices (see A134957).
LINKS
FORMULA
Euler transform of A304867.
EXAMPLE
The a(6) = 18 spanning hyperforests are the following:
{{1,2,3,4,5,6}}
{{1},{2,3,4,5,6}}
{{1,2},{3,4,5,6}}
{{1,5},{2,3,4,5}}
{{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1},{2},{3,4,5,6}}
{{1},{2,3},{4,5,6}}
{{1},{2,5},{3,4,5}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{2},{3},{4,5,6}}
{{1},{2},{3,4},{5,6}}
{{1},{2},{3,5},{4,5}}
{{1},{2},{3},{4},{5,6}}
{{1},{2},{3},{4},{5},{6}}
MATHEMATICA
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v];
c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v];
seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]& // Rest // EulerT // Prepend[#, 1]&];
seq[36] (* Jean-François Alcover, Feb 09 2020, after Andrew Howroyd *)
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
c(n)={my(v=[1]); for(i=2, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v}
seq(n)={my(u=c(n)); concat([1], EulerT(Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*(Ser(u) - 1)+ O(x*x^n))))} \\ Andrew Howroyd, Aug 29 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 20 2018
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Aug 29 2018
STATUS
approved