OFFSET
0,3
COMMENTS
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
FORMULA
Euler transform of A304867.
EXAMPLE
The a(6) = 18 spanning hyperforests are the following:
{{1,2,3,4,5,6}}
{{1},{2,3,4,5,6}}
{{1,2},{3,4,5,6}}
{{1,5},{2,3,4,5}}
{{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1},{2},{3,4,5,6}}
{{1},{2,3},{4,5,6}}
{{1},{2,5},{3,4,5}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{2},{3},{4,5,6}}
{{1},{2},{3,4},{5,6}}
{{1},{2},{3,5},{4,5}}
{{1},{2},{3},{4},{5,6}}
{{1},{2},{3},{4},{5},{6}}
MATHEMATICA
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v];
c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v];
seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]& // Rest // EulerT // Prepend[#, 1]&];
seq[36] (* Jean-François Alcover, Feb 09 2020, after Andrew Howroyd *)
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
c(n)={my(v=[1]); for(i=2, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v}
seq(n)={my(u=c(n)); concat([1], EulerT(Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*(Ser(u) - 1)+ O(x*x^n))))} \\ Andrew Howroyd, Aug 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 20 2018
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Aug 29 2018
STATUS
approved