login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134957
Number of hyperforests with n unlabeled vertices: analog of A134955 when edges of size 1 are allowed (with no two equal edges).
19
1, 2, 6, 20, 75, 310, 1422, 7094, 37877, 213610, 1256422, 7641700, 47735075, 304766742, 1981348605, 13079643892, 87480944764, 591771554768, 4042991170169, 27864757592632, 193549452132550, 1353816898675732, 9529263306483357, 67457934248821368, 480019516988969011
OFFSET
0,2
LINKS
FORMULA
Euler transform of A134959. - Gus Wiseman, May 20 2018
EXAMPLE
From Gus Wiseman, May 20 2018: (Start)
Non-isomorphic representatives of the a(3) = 20 hyperforests are the following:
{}
{{1}}
{{1,2}}
{{1,2,3}}
{{1},{2}}
{{1},{2,3}}
{{2},{1,2}}
{{3},{1,2,3}}
{{1,3},{2,3}}
{{1},{2},{3}}
{{1},{2},{1,2}}
{{1},{3},{2,3}}
{{2},{3},{1,2,3}}
{{2},{1,3},{2,3}}
{{3},{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,3},{2,3}}
{{2},{3},{1,3},{2,3}}
{{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
{{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
(End)
MATHEMATICA
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v];
b[n_] := Module[{v = {1}}, For[i = 2, i <= n, i++, v = Join[{1}, EulerT[EulerT[2 v]]]]; v];
seq[n_] := Module[{u = 2 b[n]}, Join[{1}, EulerT[ser[EulerT[u]]*(1 - x*ser[u]) + O[x]^n // CoefficientList[#, x]&]]];
seq[24] (* Jean-François Alcover, Feb 10 2020, after Andrew Howroyd *)
PROG
(PARI) \\ here b(n) is A318494 as vector
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u)))))} \\ Andrew Howroyd, Aug 27 2018
KEYWORD
nonn
AUTHOR
Don Knuth, Jan 26 2008
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018
STATUS
approved