OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
FORMULA
Euler transform of A134959. - Gus Wiseman, May 20 2018
EXAMPLE
From Gus Wiseman, May 20 2018: (Start)
Non-isomorphic representatives of the a(3) = 20 hyperforests are the following:
{}
{{1}}
{{1,2}}
{{1,2,3}}
{{1},{2}}
{{1},{2,3}}
{{2},{1,2}}
{{3},{1,2,3}}
{{1,3},{2,3}}
{{1},{2},{3}}
{{1},{2},{1,2}}
{{1},{3},{2,3}}
{{2},{3},{1,2,3}}
{{2},{1,3},{2,3}}
{{3},{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,3},{2,3}}
{{2},{3},{1,3},{2,3}}
{{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
{{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
(End)
MATHEMATICA
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v];
b[n_] := Module[{v = {1}}, For[i = 2, i <= n, i++, v = Join[{1}, EulerT[EulerT[2 v]]]]; v];
seq[n_] := Module[{u = 2 b[n]}, Join[{1}, EulerT[ser[EulerT[u]]*(1 - x*ser[u]) + O[x]^n // CoefficientList[#, x]&]]];
seq[24] (* Jean-François Alcover, Feb 10 2020, after Andrew Howroyd *)
PROG
(PARI) \\ here b(n) is A318494 as vector
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u)))))} \\ Andrew Howroyd, Aug 27 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Don Knuth, Jan 26 2008
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018
STATUS
approved