login
A286520
Number of finite connected sets of pairwise indivisible positive integers greater than one with least common multiple n.
42
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 5, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 17, 1, 1, 2, 1, 1, 5, 1, 2, 1, 5, 1, 9, 1, 1, 2, 2, 1, 5, 1, 4, 1, 1, 1, 17, 1, 1, 1
OFFSET
2,11
COMMENTS
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
EXAMPLE
The a(30)=5 sets are: {30}, {6,10}, {6,15}, {10,15}, {6,10,15}.
MATHEMATICA
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c==={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Rest[Divisors[n]]], And[!MemberQ[Tuples[#, 2], {x_, y_}/; And[x<y, Divisible[y, x]]], zsm[#]==={n}]&]], {n, 2, 20}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 24 2017
STATUS
approved