login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320105
If A001222(n) <= 2, a(n) = 1, otherwise, a(n) = Sum_{p|n} Sum_{q|n, q>=(p+[p^2 does not divide n])} a(prime(primepi(p)*primepi(q)) * (n/(p*q))), where p and q range over distinct primes dividing n. (See formula section for exact details.)
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 3, 1, 2, 2, 1, 1, 8, 1, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 11, 1, 1, 2, 1, 1, 3, 1, 2, 1, 3, 1, 16, 1, 1, 2, 2, 1, 3, 1, 8, 2, 1, 1, 11, 1, 1, 1, 4, 1, 10, 1, 2, 1, 1, 1, 16, 1, 2, 2, 6, 1, 3, 1, 4, 3
OFFSET
1,12
COMMENTS
This is an auxiliary function for computing A317145 with help of A064988. Note the similarity of the formula to that of A300385, with only difference being in the value of a(1) and that here we have multiplication (*) instead of addition (+) between primepi(p) and primepi(q).
From Gus Wiseman, Oct 09 2018: (Start)
Combinatorial interpretation is: In the poset of multiset partitions ordered by refinement, number of maximal chains from the n-th multiset multisystem (A302242) to the maximal multiset partition of the same multiset, assuming n is odd. For example, the a(315) = 10 maximal chains are
{{1},{1},{2},{1,1}} < {{1},{1},{1,1,2}} < {{1},{1,1,1,2}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{1},{1,1,2}} < {{1,1},{1,1,2}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{2},{1,1,1}} < {{1},{1,1,1,2}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{2},{1,1,1}} < {{2},{1,1,1,1}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{2},{1,1,1}} < {{1,2},{1,1,1}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{1,1},{1,2}} < {{1},{1,1,1,2}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{1,1},{1,2}} < {{1,1},{1,1,2}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{1,1},{1,2}} < {{1,2},{1,1,1}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{2},{1,1},{1,1}} < {{2},{1,1,1,1}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{2},{1,1},{1,1}} < {{1,1},{1,1,2}} < {{1,1,1,1,2}}.
(End)
FORMULA
If A001222(n) <= 2 [when n is one, a prime or semiprime], a(n) = 1, otherwise, a(n) = Sum_{p|n} Sum_{q|n, q>=(p+[p^2 does not divide n])} a(prime(primepi(p)*primepi(q)) * (n/(p*q))), where p ranges over all distinct primes dividing n, and q also ranges over primes dividing n, but with condition that q > p if p is a unitary prime factor of n, otherwise q >= p. Here primepi = A000720.
a(A064988(n)) = A317145(n).
PROG
(PARI) A320105(n) = if(bigomega(n)<=2, 1, my(f=factor(n), u = #f~, s = 0); for(i=1, u, for(j=i+(1==f[i, 2]), u, s += A320105(prime(primepi(f[i, 1])*primepi(f[j, 1]))*(n/(f[i, 1]*f[j, 1]))))); (s));
(PARI)
memoA320105 = Map();
A320105(n) = if(bigomega(n)<=2, 1, if(mapisdefined(memoA320105, n), mapget(memoA320105, n), my(f=factor(n), u = #f~, s = 0); for(i=1, u, for(j=i+(1==f[i, 2]), u, s += A320105(prime(primepi(f[i, 1])*primepi(f[j, 1]))*(n/(f[i, 1]*f[j, 1]))))); mapput(memoA320105, n, s); (s))); \\ Memoized version.
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 08 2018
STATUS
approved