login
A302242
Total weight of the n-th multiset multisystem. Totally additive with a(prime(n)) = Omega(n).
202
0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 2, 2, 1, 0, 2, 1, 3, 2, 3, 3, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 3, 1, 4, 0, 3, 2, 1, 1, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 1, 4, 1, 1, 3, 2, 2, 3, 1, 4
OFFSET
1,7
COMMENTS
A multiset multisystem is a finite multiset of finite multisets of positive integers. The n-th multiset multisystem is constructed by factoring n into prime numbers and then factoring each prime index into prime numbers and taking their prime indices. This produces a unique multiset multisystem for each n, and every possible multiset multisystem is so constructed as n ranges over all positive integers.
LINKS
EXAMPLE
Sequence of finite multisets of finite multisets of positive integers begins: (), (()), ((1)), (()()), ((2)), (()(1)), ((11)), (()()()), ((1)(1)), (()(2)), ((3)), (()()(1)), ((12)), (()(11)), ((1)(2)), (()()()()), ((4)), (()(1)(1)), ((111)), (()()(2)).
MAPLE
with(numtheory):
a:= n-> add(add(j[2], j=ifactors(pi(i[1]))[2])*i[2], i=ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Sep 07 2018
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Total[PrimeOmega/@primeMS[n]], {n, 100}]
PROG
(PARI) a(n, f=factor(n))=sum(i=1, #f~, bigomega(primepi(f[i, 1]))*f[i, 2]) \\ Charles R Greathouse IV, Nov 10 2021
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 03 2018
STATUS
approved