OFFSET
2,3
COMMENTS
A postpositive number is a positive integer other than 1. A postpositive factorization of n is a finite orderless sequence of postpositive numbers whose product is n.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..30030
Michael De Vlieger, Indices of records in A281113.
EXAMPLE
The a(20)=9 twice-factorizations are: ((20)), ((2*10)), ((4*5)), ((2*2*5)), ((2)*(10)), ((2)*(2*5)), ((4)*(5)), ((2*2)*(5)), ((2)*(2)*(5)).
Twice-factorizations of 32 organized by composite:
((2)(2)(2)(2)(2)) ((2)(2)(2)(2 2)) ((2)(2)(2 2 2)) ((2)(2 2)(2 2)) ((2)(2 2 2 2)) ((2 2)(2 2 2)) ((2 2 2 2 2))
((2)(2)(2)(4)) ((2)(2)(2 4)) ((2)(2 2)(4)) ((2)(4)(2 2)) ((2)(2 2 4)) ((2 2)(2 4)) ((4)(2 2 2)) ((2 2 2 4))
((2)(2)(8)) ((2)(2 8)) ((2 2)(8)) ((2 2 8))
((2)(4)(4)) ((2)(4 4)) ((4)(2 4)) ((2 4 4))
((2)(16)) ((2 16))
((4)(8)) ((4 8))
((32)).
Twice-factorizations of 32 organized by domain:
((2)(2)(2)(2)(2))
((2)(2)(2)(2 2)) ((2)(2)(2)(4))
((2)(2)(2 2 2)) ((2)(2)(2 4)) ((2)(2)(8))
((2)(2 2)(2 2)) ((2)(2 2)(4)) ((2)(4)(2 2)) ((2)(4)(4))
((2)(2 2 2 2)) ((2)(2 2 4)) ((2)(2 8)) ((2)(4 4)) ((2)(16))
((2 2)(2 2 2)) ((2 2)(2 4)) ((2 2)(8)) ((4)(2 2 2)) ((4)(2 4)) ((4)(8))
((2 2 2 2 2)) ((2 2 2 4)) ((2 2 8)) ((2 4 4)) ((2 16)) ((4 8)) ((32)).
MATHEMATICA
postfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[postfacs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
twicefacs[n_]:=Join@@Tuples/@Map[postfacs, postfacs[n], {2}];
Table[Length[twicefacs[n]], {n, 2, 24}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 14 2017
STATUS
approved