OFFSET
1,2
COMMENTS
Row n begins with n because it is a factorization of length 1. In each factorization, the factors are in nondecreasing order. This sequence is A056472 with the factorizations in a different order. Sequence A001055(n) gives the number of factorizations of n; A066637(n) gives the number of numbers in row n. In the Mathematica program, the function f returns a list of the factorizations of n.
These factorizations are useful in determining the forms of numbers that have a given number of divisors. For example, to find the forms of numbers that have 12 divisors, we look at the four factorizations of 12 (12, 2*6, 3*4, 2*2*3), subtract 1 from each factor, and find the forms to be p^11, p q^5, p^2 q^3, and p q r^2, where p, q, and r are prime numbers.
REFERENCES
See A001055.
LINKS
T. D. Noe, Rows n=1..1000 of triangle, flattened
R. J. Mathar, Factorizations of n=1..1100
EXAMPLE
1;
2;
3;
4,2*2;
5;
6,2*3;
7;
8,2*4,2*2*2;
9,3*3;
10,2*5;
11;
12,2*6,3*4,2*2*3;
MATHEMATICA
g[lst_, p_] := Module[{t, i, j}, Union[Flatten[Table[t=lst[[i]]; t[[j]]=p*t[[j]]; Sort[t], {i, Length[lst]}, {j, Length[lst[[i]]]}], 1], Table[Sort[Append[lst[[i]], p]], {i, Length[lst]}]]]; f[n_] := Module[{i, j, p, e, lst={{}}}, {p, e}=Transpose[FactorInteger[n]]; Do[lst=g[lst, p[[i]]], {i, Length[p]}, {j, e[[i]]}]; lst]; Flatten[Table[f[n], {n, 25}]]
PROG
(Haskell)
import Data.List (sortBy)
import Data.Ord (comparing)
a162247 n k = a162247_tabl !! (n-1) !! (k-1)
a162247_row n = a162247_tabl !! (n-1)
a162247_tabl = map (concat . sortBy (comparing length)) $ tail fss where
fss = [] : map fact [1..] where
fact x = [x] : [d : fs | d <- [2..x], let (x', r) = divMod x d,
r == 0, fs <- fss !! x', d <= head fs]
-- Reinhard Zumkeller, Jan 08 2013
CROSSREFS
KEYWORD
nice,tabf,nonn
AUTHOR
T. D. Noe, Jun 28 2009
STATUS
approved