login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227784
Least number of fourth powers which add to -1 mod n.
1
0, 1, 2, 3, 4, 2, 2, 7, 2, 4, 2, 3, 2, 2, 4, 15, 1, 2, 2, 4, 2, 2, 2, 7, 4, 2, 2, 3, 3, 4, 2, 15, 2, 1, 4, 3, 2, 2, 2, 7, 1, 2, 2, 3, 4, 2, 2, 15, 2, 4, 2, 3, 2, 2, 4, 7, 2, 3, 2, 4, 2, 2, 2, 15, 4, 2, 2, 3, 2, 4, 2, 7, 1, 2, 4, 3, 2, 2, 2, 15, 2, 1, 2, 3, 4, 2, 3, 7, 1, 4, 2
OFFSET
1,3
COMMENTS
Parnami, Agrawal, & Rajwade proved (1981, Theorem 1) that, for a prime p > 29, a(p) = 1 if p = 1 mod 8 and otherwise a(p) = 2.
Conjecture: a(n) = 15 if n = 9 mod 16 and a(n) = 7 if n = 8 mod 16, otherwise a(n) <= 4. (The associated lower bounds are obvious.)
REFERENCES
J. C. Parnami, M. K. Agrawal, and A. R. Rajwade, On the 4-power Stufe of a field, Rendiconti del Circolo Matematico di Palermo (2) 30:2 (1981), pp. 245-254.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
J. C. Parnami, M. K. Agrawal, and A. R. Rajwade, On the 4-power Stufe of p-adic completions of algebraic number fields, Rendiconti del Seminario Matematico Università e Politecnico di Torino 44:1 (1986), pp. 141-153.
FORMULA
a(n) <= A002377(n-1) <= 19.
a(n) = 1 if and only if n > 1 is in A192453.
PROG
(PARI) a(n)=if(n==1, return(0)); if(n>29 && isprime(n), return(if(n%8>1, 2, 1))); my(N, cur, new, k=1); for(i=1, n\2, cur=N=bitor(1<<(i^4%n), N)); while(!bittest(cur, n-1), new=0; for(i=1, n\2, t=cur<<(i^4%n); t=bitor(bitand(t, (1<<n)-1), t>>n); new=bitor(new, t)); k++; cur=new); k
CROSSREFS
Sequence in context: A162247 A264809 A035578 * A256445 A275103 A359729
KEYWORD
nonn
AUTHOR
STATUS
approved