login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227781
Least number of squares which add to -1 mod n.
4
0, 1, 2, 3, 1, 2, 2, 4, 2, 1, 2, 3, 1, 2, 2, 4, 1, 2, 2, 3, 2, 2, 2, 4, 1, 1, 2, 3, 1, 2, 2, 4, 2, 1, 2, 3, 1, 2, 2, 4, 1, 2, 2, 3, 2, 2, 2, 4, 2, 1, 2, 3, 1, 2, 2, 4, 2, 1, 2, 3, 1, 2, 2, 4, 1, 2, 2, 3, 2, 2, 2, 4, 1, 1, 2, 3, 2, 2, 2, 4, 2, 1, 2, 3, 1, 2, 2, 4, 1, 2, 2, 3, 2, 2
OFFSET
1,3
COMMENTS
Pfister proved that a(p) <= 2 for all primes p; then a(p) is called the stufe of the field Z/pZ.
Conjecture: a(n) = 4 if and only if n is divisible by 8 and a(n) = 3 if and only if n is 4 mod 8. Together with A008784 this would completely define the sequence.
REFERENCES
Albert Pfister, Zur Darstellung von -1 Als Summe von Quadraten in einem Korper, J. London Math. Society, 40 (1965), pp. 159-165.
A. R. Rajwade, Squares, Cambridge Univ. Press, 1983.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) <= A002828(n-1) <= 4.
a(n) = 1 if and only if n > 1 is in A008784. a(4n) >= 3 for all n.
EXAMPLE
a(3) = 2: 1^2 + 1^2 = -1 mod 3.
a(15) = 2: 2^2 + 5^2 = -1 mod 15.
PROG
(PARI) isA008784(n)=if(n%2==0, if(n%4, n/=2, return(0))); n==1||vecmax(factor(n)[, 1]%4)==1
a(n)=if(isA008784(n), return(n>1)); if(isprime(n), return(2)); if(n%8==0, return(4)); my(N, cur, new, k=1); for(i=1, n\2, cur=N=bitor(1<<(i^2%n), N)); while(!bittest(cur, n-1), new=0; for(i=1, n\2, t=cur<<(i^2%n); t=bitor(bitand(t, (1<<n)-1), t>>n); new=bitor(new, t)); k++; cur=new); k
CROSSREFS
Sequence in context: A358638 A236855 A244232 * A366294 A351441 A254761
KEYWORD
nonn
AUTHOR
STATUS
approved