OFFSET
0,3
COMMENTS
Number of multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Jul 30 2018
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300
FORMULA
a(n) = Sum_{k=0..n} A255903(n,k).
EXAMPLE
a(0) = 1: {}.
a(1) = 1: {{1}}.
a(2) = 4: {{1},{1}}, {{1,1}}, {{1},{2}}, {{1,2}}.
a(3) = 16: {{1},{1},{1}}, {{1},{1,1}}, {{1,1,1}}, {{1},{1},{2}}, {{1},{2},{2}}, {{1},{1,2}}, {{1},{2,2}}, {{2},{1,1}}, {{2},{1,2}}, {{1,1,2}}, {{1,2,2}}, {{1},{2},{3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2,3}}.
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Table[Length[Join@@mps/@allnorm[n]], {n, 6}] (* Gus Wiseman, Jul 30 2018 *)
PROG
(PARI)
R(n, k)={Vec(-1 + 1/prod(j=1, n, (1 - x^j + O(x*x^n))^binomial(k+j-1, j) ))}
seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 10 2015
STATUS
approved