|
|
A317532
|
|
Regular triangle read by rows: T(n,k) is the number of multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers.
|
|
12
|
|
|
1, 2, 2, 4, 8, 4, 8, 34, 26, 8, 16, 124, 168, 76, 16, 32, 448, 962, 674, 208, 32, 64, 1568, 5224, 5344, 2392, 544, 64, 128, 5448, 27336, 39834, 24578, 7816, 1376, 128, 256, 18768, 139712, 283864, 236192, 99832, 24048, 3392, 256, 512, 64448, 702496, 1960320, 2161602, 1186866, 370976, 70656, 8192, 512
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
EXAMPLE
|
The T(3,2) = 8 multiset partitions:
{{1},{1,1}}
{{1},{2,2}}
{{2},{1,2}}
{{1},{1,2}}
{{2},{1,1}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
Triangle begins:
1
2 2
4 8 4
8 34 26 8
16 124 168 76 16
32 448 962 674 208 32
...
|
|
MATHEMATICA
|
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Table[Length[Select[Join@@mps/@allnorm[n], Length[#]==k&]], {n, 7}, {k, n}]
|
|
PROG
|
(PARI) \\ here B(n, k) is A239473(n, k).
B(n, k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))}
Row(n)={Vecrev(sum(j=1, n, B(n, j)*polcoef(1/prod(k=1, n, (1 - x^k*y + O(x*x^n))^binomial(k+j-1, j-1)), n))/y)}
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|