login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116539
Number of zero-one matrices with n ones and no zero rows or columns and with distinct rows, up to permutation of rows.
28
1, 1, 2, 7, 28, 134, 729, 4408, 29256, 210710, 1633107, 13528646, 119117240, 1109528752, 10889570768, 112226155225, 1210829041710, 13640416024410, 160069458445202, 1952602490538038, 24712910192430620, 323964329622503527, 4391974577299578248, 61488854148194151940
OFFSET
0,3
COMMENTS
Also the number of labeled hypergraphs spanning an initial interval of positive integers with edge-sizes summing to n. - Gus Wiseman, Dec 18 2018
LINKS
P. J. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes , arXiv:math/0510155 [math.CO], 2005-2006.
M. Klazar, Extremal problems for ordered hypergraphs, arXiv:math/0305048 [math.CO], 2003.
EXAMPLE
From Gus Wiseman, Dec 18 2018: (Start)
The a(3) = 7 edge-sets:
{{1,2,3}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
Inequivalent representatives of the a(4) = 28 0-1 matrices:
[1111]
.
[100][1000][010][0100][001][0010][0001][110][110][1100][101][1010][1001]
[111][0111][111][1011][111][1101][1110][101][011][0011][011][0101][0110]
.
[10][100][100][1000][100][100][1000][1000][010][010][0100][0100][0010]
[01][010][010][0100][001][001][0010][0001][001][001][0010][0001][0001]
[11][101][011][0011][110][011][0101][0110][110][101][1001][1010][1100]
.
[1000]
[0100]
[0010]
[0001]
(End)
MAPLE
b:= proc(n, i, k) b(n, i, k):=`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j,
min(n-i*j, i-1), k)*binomial(binomial(k, i), j), j=0..n/i)))
end:
a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k), k=0..n):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 13 2019
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k]*Binomial[Binomial[k, i], j], {j, 0, n/i}]]];
a[n_] := Sum[Sum[b[n, n, i]*(-1)^(k-i)*Binomial[k, i], {i, 0, k}], {k, 0, n}];
a /@ Range[0, 23] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)
CROSSREFS
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
Row sums of A326914 and of A326962.
Sequence in context: A052319 A127783 A297195 * A266467 A370509 A141318
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Mar 27 2006
EXTENSIONS
a(0)=1 prepended and more terms added by Alois P. Heinz, Sep 13 2019
STATUS
approved