login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141318
Euler transform of A025225.
2
1, 2, 7, 28, 139, 762, 4549, 28464, 184742, 1230348, 8362298, 57756888, 404218046, 2860222020, 20428192842, 147072637472, 1066221149519, 7776835940430, 57028407361537, 420199462347876, 3109418928328473, 23098206138595710, 172184651286785655, 1287629984135461888
OFFSET
0,2
COMMENTS
Dimensions of the graded components of the domain of cocommutativity of the Hopf algebra of 2-colored planar binary trees.
FORMULA
a(n) ~ c * 8^n / n^(3/2), where c = 0.23667440081254669364903300472... . - Vaclav Kotesovec, Sep 04 2014
MAPLE
with(numtheory):
a:= proc(n) option remember;
`if`(n=0, 1, add(add((2^d)*binomial(2*d-2, d-1),
d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 27 2012
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[Sum[2^d*Binomial[2*d-2, d-1], {d, Divisors[ j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A025225.
Sequence in context: A116539 A266467 A370509 * A276080 A352659 A030875
KEYWORD
nonn
AUTHOR
Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jul 28 2017
STATUS
approved