login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352659
a(n) = n! * Sum_{k=0..floor(n/3)} 1 / (3*k)!.
4
1, 1, 2, 7, 28, 140, 841, 5887, 47096, 423865, 4238650, 46625150, 559501801, 7273523413, 101829327782, 1527439916731, 24439038667696, 415463657350832, 7478345832314977, 142088570813984563, 2841771416279691260, 59677199741873516461, 1312898394321217362142
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (exp(x) + 2 * exp(-x/2) * cos(sqrt(3)*x/2)) / (3*(1 - x)).
a(n) = floor(c * n!), where c = 1.16805831... = A143819.
MATHEMATICA
Table[n! Sum[1/(3 k)!, {k, 0, Floor[n/3]}], {n, 0, 22}]
nmax = 22; CoefficientList[Series[(Exp[x] + 2 Exp[-x/2] Cos[Sqrt[3] x/2])/(3 (1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) a(n) = n! * sum(k=0, n\3, 1/(3*k)!); \\ Michel Marcus, Mar 29 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 25 2022
STATUS
approved