OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / n!^2 = exp( (x * BesselI(0,2*sqrt(x)) + sqrt(x) * BesselI(1,2*sqrt(x))) / 2 ).
Sum_{n>=0} a(n) * x^n / n!^2 = exp( Sum_{n>=1} binomial(n+1,2) * x^n / n!^2 ).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 Binomial[k + 1, 2] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[Exp[(x BesselI[0, 2 Sqrt[x]] + Sqrt[x] BesselI[1, 2 Sqrt[x]])/2], {x, 0, nmax}], x] Range[0, nmax]!^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 25 2022
STATUS
approved