|
|
A322884
|
|
Number of set partitions of [2n] such that the maximal absolute difference between the least elements of consecutive blocks equals n.
|
|
2
|
|
|
1, 1, 5, 39, 493, 9320, 242366, 8193031, 346270455, 17780116911, 1085004090887, 77324278953174, 6344818280326312, 592415284729545433, 62319734032202722887, 7323734663214254662683, 954467851066831095051393, 137065739258353347820981920
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(0) = 1 by convention.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(1) = 1: 1|2.
a(2) = 5: 124|3, 12|34, 12|3|4, 13|2|4, 1|23|4.
|
|
MAPLE
|
b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
`if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
end:
A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
a:= n-> A(2*n, n)-`if`(n=0, 0, A(2*n, n-1)):
seq(a(n), n=0..20);
|
|
MATHEMATICA
|
b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m b[n - 1, k, m, l]];
A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];
a[n_] := A[2 n, n] - If[n == 0, 0, A[2 n, n - 1]];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|