login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322884
Number of set partitions of [2n] such that the maximal absolute difference between the least elements of consecutive blocks equals n.
2
1, 1, 5, 39, 493, 9320, 242366, 8193031, 346270455, 17780116911, 1085004090887, 77324278953174, 6344818280326312, 592415284729545433, 62319734032202722887, 7323734663214254662683, 954467851066831095051393, 137065739258353347820981920
OFFSET
0,3
COMMENTS
a(0) = 1 by convention.
LINKS
FORMULA
a(n) = A287215(2n,n).
EXAMPLE
a(1) = 1: 1|2.
a(2) = 5: 124|3, 12|34, 12|3|4, 13|2|4, 1|23|4.
MAPLE
b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
`if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
end:
A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
a:= n-> A(2*n, n)-`if`(n=0, 0, A(2*n, n-1)):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m b[n - 1, k, m, l]];
A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];
a[n_] := A[2 n, n] - If[n == 0, 0, A[2 n, n - 1]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 03 2019, translated from Maple *)
CROSSREFS
Cf. A287215.
Sequence in context: A187739 A067083 A199244 * A352658 A221412 A193118
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 29 2018
STATUS
approved