

A322887


Decimal expansion of the asymptotic mean value of the exponential abundancy index A051377(k)/k.


4



1, 1, 3, 6, 5, 7, 0, 9, 8, 7, 4, 9, 3, 6, 1, 3, 9, 0, 8, 6, 5, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Lim_{n>oo} (1/n) * Sum_{k=1..n} esigma(k)/k, where esigma(k) is the sum of exponential divisors of k (A051377).


LINKS

Table of n, a(n) for n=1..22.
Peter Hagis, Jr., Some results concerning exponential divisors, International Journal of Mathematics and Mathematical Sciences, Vol. 11, No. 2, (1988), pp. 343349.


FORMULA

Equals Product_{p prime} (1 + (1  1/p) * Sum_{k>=1} 1/(p^(3*k)p^k)).


EXAMPLE

1.136570987493613908652...


CROSSREFS

Cf. A013661 (all divisors), A051377.
Sequence in context: A275925 A282581 A247581 * A175650 A272976 A113533
Adjacent sequences: A322884 A322885 A322886 * A322888 A322889 A322890


KEYWORD

nonn,cons,more


AUTHOR

Amiram Eldar, Dec 29 2018


EXTENSIONS

a(7)a(22) from Jon E. Schoenfield, Dec 30 2018


STATUS

approved



