OFFSET
1,3
LINKS
Peter Hagis, Jr., Some results concerning exponential divisors, International Journal of Mathematics and Mathematical Sciences, Vol. 11, No. 2, (1988), pp. 343-349.
FORMULA
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} esigma(k)/k, where esigma(k) is the sum of exponential divisors of k (A051377).
Equals Product_{p prime} (1 + (1 - 1/p) * Sum_{k>=1} 1/(p^(3*k)-p^k)).
EXAMPLE
1.13657098749361390865207315238383259344880901863957...
PROG
(PARI) default(realprecision, 120); default(parisize, 2000000000);
my(kmax = 135); prodeulerrat(1 + (1 - 1/p) * sum(k = 1, kmax, 1/(p^(3*k)-p^k))) \\ Amiram Eldar, Mar 09 2024 (The calculation takes a few minutes.)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Dec 29 2018
EXTENSIONS
a(7)-a(22) from Jon E. Schoenfield, Dec 30 2018
More terms from Amiram Eldar, Mar 09 2024
STATUS
approved