Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Mar 09 2024 08:18:39
%S 1,1,3,6,5,7,0,9,8,7,4,9,3,6,1,3,9,0,8,6,5,2,0,7,3,1,5,2,3,8,3,8,3,2,
%T 5,9,3,4,4,8,8,0,9,0,1,8,6,3,9,5,7,2,7,6,7,8,9,0,5,2,6,5,4,4,3,1,6,2,
%U 3,9,7,2,0,3,1,5,1,5,2,8,8,3,6,8,7,6,1,3,9,2,7,2,7,4,8,9,8,5,5,2,6,2,1,9,2
%N Decimal expansion of the asymptotic mean value of the exponential abundancy index A051377(k)/k.
%H Peter Hagis, Jr., <a href="http://dx.doi.org/10.1155/S0161171288000407">Some results concerning exponential divisors</a>, International Journal of Mathematics and Mathematical Sciences, Vol. 11, No. 2, (1988), pp. 343-349.
%F Equals lim_{n->oo} (1/n) * Sum_{k=1..n} esigma(k)/k, where esigma(k) is the sum of exponential divisors of k (A051377).
%F Equals Product_{p prime} (1 + (1 - 1/p) * Sum_{k>=1} 1/(p^(3*k)-p^k)).
%e 1.13657098749361390865207315238383259344880901863957...
%o (PARI) default(realprecision, 120); default(parisize, 2000000000);
%o my(kmax = 135); prodeulerrat(1 + (1 - 1/p) * sum(k = 1, kmax, 1/(p^(3*k)-p^k))) \\ _Amiram Eldar_, Mar 09 2024 (The calculation takes a few minutes.)
%Y Cf. A013661 (all divisors), A051377.
%K nonn,cons
%O 1,3
%A _Amiram Eldar_, Dec 29 2018
%E a(7)-a(22) from _Jon E. Schoenfield_, Dec 30 2018
%E More terms from _Amiram Eldar_, Mar 09 2024