login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051377
a(1)=1; for n > 1, a(n) = sum of exponential divisors (or e-divisors) of n.
63
1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 22, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 66, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67, 102, 69, 70, 71
OFFSET
1,2
COMMENTS
The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
a(n) = n if and only if n is squarefree. - Jon Perry, Nov 13 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
J. Fabrykowski and M. V. Subbarao, The maximal order and the average order of multiplicative function sigma^(e)(n), in Théorie des nombres/Number theory (Quebec, PQ, 1987), 201-206, de Gruyter, Berlin, 1989.
Nicussor Minculete, Concerning some arithmetic functions which use exponential divisors, Acta Universitatis Apulensis, No. 28/2011, pp. 125-133.
Y.-F. S. Pétermann and J. Wu, On the sum of exponential divisors of an integer, Acta Math. Hungar. 77 (1997), 159-175.
Eric Weisstein's World of Mathematics, e-Divisor
FORMULA
Multiplicative with a(p^e) = Sum_{d|e} p^d. - Vladeta Jovovic, Apr 23 2002
a(n) = A126164(n)+n. - R. J. Mathar, Oct 05 2017
The average order of a(n) is Dn + O(n^e) for any e > 0, due to Fabrykowski & Subbarao, where D is about 0.568. (D >= 0.5 since a(n) >= n.) - Charles R Greathouse IV, Sep 22 2023
EXAMPLE
a(8)=10 because 2 and 2^3 are e-divisors of 8 and 2+2^3=10.
MAPLE
A051377 := proc(n)
local a, pe, p, e;
a := 1;
for pe in ifactors(n)[2] do
p := pe[1] ;
e := pe[2] ;
add(p^d, d=numtheory[divisors](e)) ;
a := a*% ;
end do:
a ;
end proc:
seq(A051377(n), n=1..100) ; # R. J. Mathar, Oct 05 2017
MATHEMATICA
a[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, Apr 06 2012 *)
PROG
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2], d, f[i, 1]^d)) \\ Charles R Greathouse IV, Nov 22 2011
(PARI) ediv(n, f=factor(n))=my(v=List(), D=apply(divisors, f[, 2]~), t=#f~); forvec(u=vector(t, i, [1, #D[i]]), listput(v, prod(j=1, t, f[j, 1]^D[j][u[j]]))); Set(v)
a(n)=vecsum(ediv(n)) \\ Charles R Greathouse IV, Oct 29 2018
(Haskell)
a051377 n = product $ zipWith sum_e (a027748_row n) (a124010_row n) where
sum_e p e = sum [p ^ d | d <- a027750_row e]
-- Reinhard Zumkeller, Mar 13 2012
(GAP) A051377:=n->Product(List(Collected(Factors(n)), p -> Sum(DivisorsInt(p[2]), d->p[1]^d))); List([1..10^4], n -> A051377(n)); # Muniru A Asiru, Oct 29 2017
CROSSREFS
Cf. A051378, A049419 (number of e-divisors).
Row sums of A322791.
See A307042 and A275480 where the formula and constant appear.
Sequence in context: A323309 A322857 A361175 * A369319 A336465 A340774
KEYWORD
nonn,easy,nice,mult
EXTENSIONS
More terms from Jud McCranie, May 29 2000
Definition corrected by Jaroslav Krizek, Feb 27 2009
STATUS
approved