The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051378 Sum of (1+e)-divisors of n. Let n = Product_i p(i)^r(i) then (1+e)-sigma(n) = Product_i (1 + Sum_{s|r(i)} p(i)^s) . 12
 1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 23, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 92, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144, 68, 126, 96 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA Multiplicative with a(p^e) = 1+Sum_{d|e} p^d. - Vladeta Jovovic, Apr 23 2002 MAPLE A051378 := proc(n)     local a, d, p, e, sp;     a := 1;     for d in ifactors(n)[2] do         p := op(1, d) ;         e := op(2, d) ;         sp := 1;         for s in numtheory[divisors](e) do             sp := sp+p^s ;         end do:         a := a*sp ;     end do:     a; end proc: # R. J. Mathar, Oct 26 2015 MATHEMATICA a[1] = 1; a[p_?PrimeQ] = p+1; a[n_] := Times @@ (1 + Sum[First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, May 04 2012 *) PROG (PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2], d, f[i, 1]^d)+1) \\ Charles R Greathouse IV, Nov 22 2011 (Haskell) a051378 n = product \$ zipWith sum_1e (a027748_row n) (a124010_row n)    where sum_1e p e = 1 + sum [p ^ d | d <- a027750_row e] -- Reinhard Zumkeller, Mar 13 2012 CROSSREFS Cf. A051377, A049599. Cf. A027748, A124010, A027750, A069915. Sequence in context: A073183 A049418 A333926 * A254981 A116607 A107749 Adjacent sequences:  A051375 A051376 A051377 * A051379 A051380 A051381 KEYWORD nonn,easy,nice,mult AUTHOR EXTENSIONS Corrected and extended by Naohiro Nomoto, Apr 12 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 23:46 EDT 2021. Contains 343957 sequences. (Running on oeis4.)