login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254981
a(n) is the sum of the divisors d of n such that n/d is cubefree.
5
1, 3, 4, 7, 6, 12, 8, 14, 13, 18, 12, 28, 14, 24, 24, 28, 18, 39, 20, 42, 32, 36, 24, 56, 31, 42, 39, 56, 30, 72, 32, 56, 48, 54, 48, 91, 38, 60, 56, 84, 42, 96, 44, 84, 78, 72, 48, 112, 57, 93, 72, 98, 54, 117, 72, 112, 80, 90, 60, 168, 62, 96, 104, 112, 84, 144
OFFSET
1,2
COMMENTS
Inverse Möbius transform of A254926.
FORMULA
a(n) = Sum_{d | n} d * A212793(n/d) = n * Sum_{d | n} A212793(d) / d.
a(n) = Sum_{d^3 | n} mu(d) * A000203(n/d^3).
Multiplicative with a(p) = 1 + p; a(p^e) = p^(e-2) * (1 + p + p^2), for e>1.
Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(3s).
If n is powerful, a(n^k) = n^(k-1) * a(n).
For k>1, a(n^k) = n^(k-1) * a(n) * Product_{p prime, ord(n,p)=1} (p^3-1) / (p^3-p).
Sum_{k=1..n} a(k) ~ 315*n^2 / (4*Pi^4). - Vaclav Kotesovec, Feb 03 2019
MATHEMATICA
nn = 66; f[list_, i_] := list[[i]]; a = Table[If[Max[FactorInteger[n][[All, 2]]] < 3, 1, 0], {n, 1, nn}]; b =Table[n, {n, 1, nn}]; Table[
DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 22 2015 *)
f[p_, e_] := p^(e-2) * (1 + p + p^2); f[p_, 1] := 1 + p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
PROG
(PARI) a212793(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i, 2]) >=3, return(0)); ); return (1); }
a(n) = sumdiv(n, d, d*a212793(n/d)); \\ Michel Marcus, Feb 11 2015
(PARI) a(n) = sumdiv(n, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))*sigma(n/d), 0)); \\ Michel Marcus, Mar 04 2015
CROSSREFS
KEYWORD
mult,nonn,easy
AUTHOR
Álvar Ibeas, Feb 11 2015
STATUS
approved