OFFSET
1,2
COMMENTS
Inverse Möbius transform of A254926.
FORMULA
a(n) = Sum_{d^3 | n} mu(d) * A000203(n/d^3).
Multiplicative with a(p) = 1 + p; a(p^e) = p^(e-2) * (1 + p + p^2), for e>1.
Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(3s).
If n is powerful, a(n^k) = n^(k-1) * a(n).
For k>1, a(n^k) = n^(k-1) * a(n) * Product_{p prime, ord(n,p)=1} (p^3-1) / (p^3-p).
Sum_{k=1..n} a(k) ~ 315*n^2 / (4*Pi^4). - Vaclav Kotesovec, Feb 03 2019
MATHEMATICA
nn = 66; f[list_, i_] := list[[i]]; a = Table[If[Max[FactorInteger[n][[All, 2]]] < 3, 1, 0], {n, 1, nn}]; b =Table[n, {n, 1, nn}]; Table[
DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 22 2015 *)
f[p_, e_] := p^(e-2) * (1 + p + p^2); f[p_, 1] := 1 + p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
PROG
(PARI) a212793(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i, 2]) >=3, return(0)); ); return (1); }
a(n) = sumdiv(n, d, d*a212793(n/d)); \\ Michel Marcus, Feb 11 2015
(PARI) a(n) = sumdiv(n, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))*sigma(n/d), 0)); \\ Michel Marcus, Mar 04 2015
CROSSREFS
KEYWORD
mult,nonn,easy
AUTHOR
Álvar Ibeas, Feb 11 2015
STATUS
approved