login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the sum of the divisors d of n such that n/d is cubefree.
5

%I #26 Aug 27 2023 04:23:00

%S 1,3,4,7,6,12,8,14,13,18,12,28,14,24,24,28,18,39,20,42,32,36,24,56,31,

%T 42,39,56,30,72,32,56,48,54,48,91,38,60,56,84,42,96,44,84,78,72,48,

%U 112,57,93,72,98,54,117,72,112,80,90,60,168,62,96,104,112,84,144

%N a(n) is the sum of the divisors d of n such that n/d is cubefree.

%C Inverse Möbius transform of A254926.

%H <a href="/A254981/b254981.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{d | n} d * A212793(n/d) = n * Sum_{d | n} A212793(d) / d.

%F a(n) = Sum_{d^3 | n} mu(d) * A000203(n/d^3).

%F Multiplicative with a(p) = 1 + p; a(p^e) = p^(e-2) * (1 + p + p^2), for e>1.

%F Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(3s).

%F If n is powerful, a(n^k) = n^(k-1) * a(n).

%F For k>1, a(n^k) = n^(k-1) * a(n) * Product_{p prime, ord(n,p)=1} (p^3-1) / (p^3-p).

%F Sum_{k=1..n} a(k) ~ 315*n^2 / (4*Pi^4). - _Vaclav Kotesovec_, Feb 03 2019

%t nn = 66; f[list_, i_] := list[[i]]; a = Table[If[Max[FactorInteger[n][[All, 2]]] < 3, 1, 0], {n, 1, nn}]; b =Table[n, {n, 1, nn}]; Table[

%t DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* _Geoffrey Critzer_, Feb 22 2015 *)

%t f[p_, e_] := p^(e-2) * (1 + p + p^2); f[p_, 1] := 1 + p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 27 2023 *)

%o (PARI) a212793(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i, 2]) >=3, return(0)); ); return (1); }

%o a(n) = sumdiv(n, d, d*a212793(n/d)); \\ _Michel Marcus_, Feb 11 2015

%o (PARI) a(n) = sumdiv(n, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))*sigma(n/d), 0)); \\ _Michel Marcus_, Mar 04 2015

%Y Cf. A000203, A001615, A001694, A212793, A254926.

%K mult,nonn,easy

%O 1,2

%A _Álvar Ibeas_, Feb 11 2015