login
A116607
Sum of the divisors of n which are not divisible by 9.
11
1, 3, 4, 7, 6, 12, 8, 15, 4, 18, 12, 28, 14, 24, 24, 31, 18, 12, 20, 42, 32, 36, 24, 60, 31, 42, 4, 56, 30, 72, 32, 63, 48, 54, 48, 28, 38, 60, 56, 90, 42, 96, 44, 84, 24, 72, 48, 124, 57, 93, 72, 98, 54, 12, 72, 120, 80, 90, 60, 168, 62, 96, 32, 127, 84, 144, 68, 126, 96
OFFSET
1,2
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 475 Entry 7(i).
LINKS
J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012).
FORMULA
Expansion of (eta(q^3)^10 / (eta(q) eta(q^9))^3 - 1) / 3 in powers of q.
a(n) is multiplicative with a(3^e) = 4 if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f.: Sum_{k>0} k * x^k /(1 - x^k) - 9*k * x^(9*k) / (1 - x^(9*k)).
L.g.f.: log(Product_{k>=1} (1 - x^(9*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
Sum_{k=1..n} a(k) ~ (2*Pi^2/27) * n^2. - Amiram Eldar, Oct 04 2022
EXAMPLE
q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 15*q^8 + 4*q^9 + ...
MATHEMATICA
With[{c=9Range[20]}, Table[Total[Complement[Divisors[i], c]], {i, 80}]] (* Harvey P. Dale, Dec 19 2010 *)
Drop[CoefficientList[Series[Sum[k * x^k /(1 - x^k) - 9*k * x^(9*k) / (1 - x^(9*k)) , {k, 1, 100}], {x, 0, 100}], x], 1] (* Indranil Ghosh, Mar 25 2017 *)
f[p_, e_] := If[p == 3, 4, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
PROG
(PARI) {a(n) = if( n<1, 0, sigma(n) - if( n%9==0, 9 * sigma(n/9)))}
(PARI) {a(n) = polcoeff( sum( k=1, n, k * (x^k /(1 - x^k) - 9 * x^(9*k) /(1 - x^(9*k))), x * O(x^n)), n)}
(PARI) q='q+O('q^66); Vec( (eta(q^3)^10/(eta(q)*eta(q^9))^3 - 1) /3 ) \\ Joerg Arndt, Mar 25 2017
(Python)
from sympy import divisors
print([sum(i for i in divisors(n) if i%9) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017
CROSSREFS
A096726(n) = 3*a(n) if n>0.
Sequence in context: A366440 A344575 A254981 * A355633 A107749 A353783
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Feb 19 2006
STATUS
approved