login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284326
Sum of the divisors of n that are not divisible by 6.
9
1, 3, 4, 7, 6, 6, 8, 15, 13, 18, 12, 10, 14, 24, 24, 31, 18, 15, 20, 42, 32, 36, 24, 18, 31, 42, 40, 56, 30, 36, 32, 63, 48, 54, 48, 19, 38, 60, 56, 90, 42, 48, 44, 84, 78, 72, 48, 34, 57, 93, 72, 98, 54, 42, 72, 120, 80, 90, 60, 60, 62, 96, 104, 127, 84, 72, 68
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 6*k*x^(6*k)/(1 - x^(6*k)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) ~ (5*Pi^2/72) * n^2. - Amiram Eldar, Oct 04 2022
Dirichlet g.f. (1-6^(1-s))*zeta(s-1)*zeta(s), but not multiplicative. - R. J. Mathar, May 17 2023
MATHEMATICA
Table[Sum[Boole[Mod[d, 6]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 25 2017 *)
Table[Total[Select[Divisors[n], Mod[#, 6]!=0&]], {n, 100}] (* Harvey P. Dale, Feb 25 2020 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, d, ((d%6)>0)*d), ", ")) \\ Indranil Ghosh, Mar 25 2017
(Python)
from sympy import divisors
print([sum([i for i in divisors(n) if i%6]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017
CROSSREFS
Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), this sequence (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), A284344 (k=10).
Sequence in context: A023888 A222085 A187793 * A117553 A331694 A290270
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 25 2017
STATUS
approved