login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290270
Number of minimal dominating sets in the n-wheel graph.
3
3, 4, 7, 6, 6, 15, 15, 22, 28, 45, 58, 79, 115, 159, 223, 307, 438, 609, 852, 1194, 1675, 2347, 3282, 4606, 6451, 9040, 12663, 17749, 24871, 34845, 48831, 68424, 95883, 134350, 188266, 263811, 369667, 518002, 725860, 1017129, 1425262, 1997179, 2798583
OFFSET
3,1
COMMENTS
The n-wheel graph is well defined for n >= 4. If the sequence is extended to n=1 using A253413 then the initial terms are 1,2,3,4,... If the sequence is extended using the recurrence the initial terms are 7,1,3,4,... - Andrew Howroyd, Jul 27 2017
LINKS
Eric Weisstein's World of Mathematics, Minimal Dominating Set
Eric Weisstein's World of Mathematics, Wheel Graph
FORMULA
From Andrew Howroyd, Jul 27 2017: (Start)
a(n) = A253413(n-1) + 1 for n > 2.
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6) - 1 for n>8.
G.f.: x*(7 - 6*x - 5*x^2 + 2*x^5 + x^6) / ((1 - x^2 - x^3 -x^4 + x^6)*(1 - x)).
(End)
G.f.: x^3*(3+x-5*x^3-7*x^4+6*x^5+x^6)/((1-x^2-x^3-x^4+x^6)*(1-x)). - Vincenzo Librandi, Aug 04 2017
MATHEMATICA
Table[1 + RootSum[1 - #1^2 - #1^3 - #1^4 + #1^6 &, #^(n - 1) &], {n, 3, 20}] (* Eric W. Weisstein, Aug 04 2017 *)
LinearRecurrence[{1, 1, 0, 0, -1, -1, 1}, {3, 4, 7, 6, 6, 15, 15}, 20] (* Eric W. Weisstein, Aug 04 2017 *)
CoefficientList[Series[(3 + x - 5 x^3 - 7 x^4 + 6 x^5 + x^6)/((1 - x^2 - x^3 - x^4 + x^6) (1-x)), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 04 2017 *)
PROG
(PARI)
Vec(((7-6*x-5*x^2+2*x^5+x^6)) / ((1-x^2-x^3-x^4+x^6)*(1-x)) + O(x^40)) \\ Andrew Howroyd, Jul 27 2017
(Magma) I:=[3, 4, 7, 6, 6, 15, 15, 22, 28]; [n le 9 select I[n] else Self(n-2)+Self(n-3)+Self(n-4)-Self(n-6)-1: n in [1..50]]; // Vincenzo Librandi, Aug 04 2017
CROSSREFS
Cf. A253413.
Sequence in context: A284326 A117553 A331694 * A168275 A325968 A325818
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jul 25 2017
EXTENSIONS
a(3) and a(16)-a(45) from Andrew Howroyd, Jul 27 2017
STATUS
approved