login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290271
Expansion of j(q) * q * Product_{n>=1} (1+q^n)^24 where j(q) is the elliptic modular invariant (A000521).
1
1, 768, 215040, 26444800, 1441185792, 47967398400, 1138440560640, 21001337579520, 317833282191360, 4093417325768448, 46062726364262400, 461921554374159360, 4191623003406663680, 34838889359457538560, 267847934788735057920
OFFSET
0,2
LINKS
Steven R. Finch, Modular forms on SL_2(Z), December 28, 2005. [Cached copy, with permission of the author]
FORMULA
Let b(q) = q * Product_{n>=1} (1+q^n)^24.
G.f.: j(q) * b(q) = (1 + 256*b(q))^3.
a(n) ~ 3^(1/4) * exp(2*Pi*sqrt(6*n)) / (4096 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Jul 26 2017
MATHEMATICA
nmax = 20; CoefficientList[Series[(1 + 256*x*Product[(1 + x^k)^24, {k, 1, nmax}])^3, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 26 2017 *)
CROSSREFS
Cf. A000521, A014103 (b(q)).
Sequence in context: A268970 A339763 A204625 * A206711 A308789 A046505
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 25 2017
STATUS
approved