The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290273 Number of minimal dominating sets in the n-pan graph. 1
 2, 2, 3, 5, 7, 8, 13, 18, 25, 34, 49, 69, 95, 134, 188, 264, 368, 517, 725, 1015, 1422, 1993, 2794, 3913, 5484, 7685, 10769, 15089, 21144, 29630, 41518, 58178, 81523, 114237, 160075, 224308, 314317, 440442, 617177, 864830, 1211861, 1698141, 2379551, 3334390, 4672376 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Extended to a(1)-a(2) using the recurrence. LINKS Eric Weisstein's World of Mathematics, Minimal Dominating Set Eric Weisstein's World of Mathematics, Pan Graph FORMULA a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6). G.f.: x*(2 + 2*x + x^2 + x^3 - 2*x^5)/(1 - x^2 - x^3 - x^4 + x^6). MATHEMATICA Table[-RootSum[1 - #^2 - #^3 - #^4 + #^6 &, -9 #^n + 33 #^(n + 1) - 23 #^(n + 2) - 45 #^(n + 3) - 38 #^(n + 4) + #^(n + 5) &]/229, {n, 20}] LinearRecurrence[{0, 1, 1, 1, 0, -1}, {2, 2, 3, 5, 7, 8}, 50] CoefficientList[Series[(2 + 2 x + x^2 + x^3 - 2 x^5)/(1 - x^2 - x^3 - x^4 + x^6), {x, 0, 20}], x] CROSSREFS Sequence in context: A079953 A133393 A126881 * A125505 A061565 A077075 Adjacent sequences:  A290270 A290271 A290272 * A290274 A290275 A290276 KEYWORD nonn,easy AUTHOR Eric W. Weisstein, Jul 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 19:20 EST 2021. Contains 349585 sequences. (Running on oeis4.)