login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290272
Expansion of j(q) * q * Product_{n>=1} ((1 - q^(5*n))/(1 - q^n))^6 where j(q) is the elliptic modular invariant (A000521).
1
1, 750, 201375, 22695250, 998651625, 26031517500, 480182965250, 6889530585750, 81442044063750, 824111047734000, 7333504889261250, 58541361200675250, 425628799655493875, 2852238724568034000, 17785782442113552000, 104010815310940347500
OFFSET
0,2
LINKS
Steven R. Finch, Modular forms on SL_2(Z), December 28, 2005. [Cached copy, with permission of the author]
FORMULA
Let b(q) = q * Product_{n>=1} ((1 - q^(5*n))/(1 - q^n))^6.
G.f.: j(q) * b(q) = (1 + 250*b(q) + 3125*b(q)^2)^3.
a(n) ~ exp(4*Pi*sqrt(6*n/5)) * 3^(1/4) / (2^(1/4) * 5^(13/4) * n^(3/4)). - Vaclav Kotesovec, Nov 10 2017
Empirical : Sum_{n>=0} a(n)/exp(2*Pi*n) = -3456/125+1728/125*5^(1/2), validated at 2048 digits. - Simon Plouffe, May 07 2023. Also equal to (12/(5*phi))^3, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 07 2023
CROSSREFS
Cf. A000521, A121591 (b(q)).
Sequence in context: A237798 A015067 A129036 * A291524 A373206 A020391
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 25 2017
STATUS
approved