login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of j(q) * q * Product_{n>=1} ((1 - q^(5*n))/(1 - q^n))^6 where j(q) is the elliptic modular invariant (A000521).
1

%I #25 May 07 2023 12:13:02

%S 1,750,201375,22695250,998651625,26031517500,480182965250,

%T 6889530585750,81442044063750,824111047734000,7333504889261250,

%U 58541361200675250,425628799655493875,2852238724568034000,17785782442113552000,104010815310940347500

%N Expansion of j(q) * q * Product_{n>=1} ((1 - q^(5*n))/(1 - q^n))^6 where j(q) is the elliptic modular invariant (A000521).

%H Seiichi Manyama, <a href="/A290272/b290272.txt">Table of n, a(n) for n = 0..1000</a>

%H Steven R. Finch, <a href="/A000521/a000521_1.pdf">Modular forms on SL_2(Z)</a>, December 28, 2005. [Cached copy, with permission of the author]

%F Let b(q) = q * Product_{n>=1} ((1 - q^(5*n))/(1 - q^n))^6.

%F G.f.: j(q) * b(q) = (1 + 250*b(q) + 3125*b(q)^2)^3.

%F a(n) ~ exp(4*Pi*sqrt(6*n/5)) * 3^(1/4) / (2^(1/4) * 5^(13/4) * n^(3/4)). - _Vaclav Kotesovec_, Nov 10 2017

%F Empirical : Sum_{n>=0} a(n)/exp(2*Pi*n) = -3456/125+1728/125*5^(1/2), validated at 2048 digits. - _Simon Plouffe_, May 07 2023. Also equal to (12/(5*phi))^3, where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, May 07 2023

%Y Cf. A000521, A121591 (b(q)).

%K nonn

%O 0,2

%A _Seiichi Manyama_, Jul 25 2017