login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014103 Expansion of (eta(q^2) / eta(q))^24 in powers of q. 8
1, 24, 300, 2624, 18126, 105504, 538296, 2471424, 10400997, 40674128, 149343012, 519045888, 1718732998, 5451292992, 16633756008, 49010118656, 139877936370, 387749049720, 1046413709980, 2754808758144, 7087483527072, 17848133716832 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Given g.f. A(q), Greenhill (1895) denotes -64 * A(q^2) by tau_0 on page 409 equation (43). - Michael Somos, Jul 17 2013

REFERENCES

John H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.

A. G. Greenhill, The Transformation and Division of Elliptic Functions, Proceedings of the London Mathematical Society (1895) 403-486.

R. S. Maier, On Rationally Parametrized Modular Equations, arXiv:math/0611041 [math.NT], 2006-2008, see page 4 equation (4)

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Index entries for reversions of series

FORMULA

REVERT(A005149).

Euler transform of period 2 sequence [ 24, 0, 24, 0, ...]. - Michael Somos, Mar 19 2004

Expansion of (lambda(q) / 16)^2 / (1 - lambda(q)) in powers of q = exp(2 Pi i t) where lambda() is the elliptic modular function A115977. - Michael Somos, Nov 19 2005

Expansion of q / chi(-q)^24 in powers of q where chi() is a Ramanujan theta function.

Expansion of (theta_2(q) * theta_3(q) / (2 * theta_4(q)^2))^4 = (theta_2(q^(1/2))^2 / (4*theta_4(q^(1/2)) * theta_3(q^(1/2))))^4 in powers of q.

G.f.: x * Product_{k > 0} (1 + x^k)^24 = x / Product_{k > 0} (1 - x^(2*k - 1))^24.

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 48*u*v - 4096*u*v^2. - Michael Somos, Mar 19 2004

G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = (1/4096) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A007191. - Michael Somos, Aug 19 2007

j(q) = (f(q) + 16)^3 / f(q), j(q^2) = (f(q) + 256)^3 / f(q)^2 where j(q) is the g.f. for A000521 and f(q) is 4096 times the g.f. for a(n). - Michael Somos, Oct 01 2007

Convolution inverse of A007191. Series reversion of A005149.

Empirical : sum(exp(-2*Pi)^n*a(n), n = 1..infinity) = 1/512. - Simon Plouffe, Feb 20 2011

a(n) ~ exp(2 * Pi * sqrt(2*n)) / (4096 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015

a(1) = 1, a(n) = (24/(n-1))*Sum_{k=1..n-1} A000593(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017

G.f.: x*exp(24*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

EXAMPLE

G.f. = q + 24*q^2 + 300*q^3 + 2624*q^4 + 18126*q^5 + 105504*q^6 + 538296*q^7 + ...

MAPLE

q*mul((1+q^m)^24, m=1..30);

MATHEMATICA

a[ n_] := SeriesCoefficient[ q QPochhammer[ q, q^2]^-24, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)

a[ n_] := SeriesCoefficient[ q / Product[ 1 - q^k, {k, 1, n + 1, 2}]^24, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)

a[ n_] := With[ {m = ModularLambda[ Log[q]/(Pi I)]}, SeriesCoefficient[ (m/16)^2 / (1 - m), {q, 0, 2 n}]]; (* Michael Somos, Jul 11 2011 *)

a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m/16)^2 /(1 - m), {q, 0, 2 n}]]; (* Michael Somos, Jul 11 2011 *)

eta[q_]:=q^(1/6) QPochhammer[q]; a[n_]:=SeriesCoefficient[(eta[q^2] / eta[q])^24, {q, 0, n}]; Table[a[n], {n, 4, 25}] (* Vincenzo Librandi, Oct 18 2018 *)

PROG

(PARI) {a(n) = polcoeff( x * prod( k=1, n, 1 + x^k, 1 + x * O(x^n))^24, n)};

(PARI) {a(n) = my(A, A2, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst( A, x, x^2); A2 = A * (1 + 16*A); A = 8 * A2 + (1 + 32*A) * sqrt(A2)); polcoeff( A + 16 * A^2, n))};

(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^24, n))};

CROSSREFS

Cf. A005149, A007191, A115977.

Sequence in context: A162686 A010976 A100130 * A321953 A206002 A000552

Adjacent sequences:  A014100 A014101 A014102 * A014104 A014105 A014106

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Michael Somos, Nov 24 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)