login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212793
Characteristic function of cubefree numbers, A004709.
33
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1
OFFSET
1
COMMENTS
The following four statements are equivalent: m is cubefree; a(m) = 1; m = A004709(k) for some k; A124010(m,k) <= 2 for all k = 1..A001221(m). - Reinhard Zumkeller, Mar 04 2015
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..100000 (first 10000 terms from Reinhard Zumkeller)
Eric Weisstein's World of Mathematics, Cubefree.
FORMULA
a(A004709(n)) = 1, a(A046099(n)) = 0;
a(n) = A000007(A000005(n) - A073184(n)).
a(n) = abs(A053864(n)).
Multiplicative with a(p^e) = 1 if e<=2, =0 if e>=3. - R. J. Mathar, Dec 17 2012
Sum_{n>0} a(n)/n^s = Product_{p prime} (1+p^(-s)+p^(-2s)) = zeta(s) / zeta(3s). - Ralf Stephan, Jul 07 2013
a(n) = Sum_{d|n} A008966(n/d) * A307423(d). - Antti Karttunen, Jul 14 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/zeta(3) (A088453). - Amiram Eldar, Jul 23 2022
Dirichlet g.f.: zeta(s)/zeta(3*s). - Amiram Eldar, Dec 27 2022
MATHEMATICA
Table[Boole[Max[FactorInteger[n][[All, 2]]] < 3], {n, 1, 100}] (* Geoffrey Critzer, Feb 25 2015 *)
PROG
(Haskell)
a212793 = cubeFree a000040_list 0 0 where
cubeFree ps'@(p:ps) q e x
| e > 2 = 0
| x == 1 = 1
| r > 0 = cubeFree ps p 0 x
| otherwise = cubeFree ps' p (e + 1) x' where (x', r) = divMod x p
-- Reinhard Zumkeller, Mar 04 2015, May 27 2012
(PARI) a(n) = {f = factor(n); for (i=1, #f~, if ((f[i, 2]) >=3, return(0)); ); return (1); } \\ Michel Marcus, Feb 10 2015
(PARI) A212793(n) = factorback(apply(e->(e<=2), factor(n)[, 2])); \\ Antti Karttunen, Jul 14 2022
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, May 27 2012
EXTENSIONS
Data section extended up to a(105) by Antti Karttunen, Jul 14 2022
STATUS
approved