login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307423
Dirichlet g.f.: zeta(2*s) / zeta(3*s).
4
1, 0, 0, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1
OFFSET
1
COMMENTS
Dirichlet convolution of A212793 and A008836.
LINKS
Eric Weisstein's World of Mathematics, Dirichlet Generating Function.
Wikipedia, Dirichlet series.
FORMULA
Multiplicative with a(p) = 0, and a(p^e) = (-1)^e for e >= 2. - Amiram Eldar, Dec 25 2022
MATHEMATICA
Table[DivisorSum[n, Boole[Max[FactorInteger[#][[All, 2]]] < 3] * LiouvilleLambda[n/#]&], {n, 1, 100}]
f[p_, e_] := (-1)^e; f[p_, 1] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 25 2022 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1-X^3)/(1-X^2))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
(PARI)
A212793(n) = factorback(apply(e->(e<=2), factor(n)[, 2]));
A307423(n) = sumdiv(n, d, ((-1)^bigomega(d))*A212793(n/d)); \\ Antti Karttunen, Jul 14 2022
CROSSREFS
Cf. A112526 (absolute values).
Sequence in context: A354868 A075802 A112526 * A355684 A355683 A373374
KEYWORD
sign,mult
AUTHOR
Vaclav Kotesovec, Apr 08 2019
EXTENSIONS
Data section extended up to a(108) by Antti Karttunen, Jul 14 2022
STATUS
approved